Skip to main content

Myofibroblast Markers and Microscopy Detection Methods in Cell Culture and Histology

  • Protocol
  • First Online:
Myofibroblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2299))

Abstract

The identification of myofibroblasts is essential for mechanistic in vitro studies, cell-based drug tests, and to assess the level of fibrosis in experimental animal or human fibrosis. The name myo-fibroblast was chosen in 1971 to express that the formation of contractile features-stress fibers is the essential criterion to define these cells. Additional neo-expression of α-smooth muscle actin (α-SMA) in stress fibers has become the most widely used molecular marker. Here, we briefly introduce the concept of different myofibroblast activation states, of which the highly contractile α-SMA-positive phenotype represents a most advanced functional stage. We provide targeted immunofluorescence protocols to assess this phenotype, and publicly accessible image analysis tools to quantify the level of myofibroblast activation in culture and in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walraven M, Hinz B (2018) Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol 71–72:205–224. https://doi.org/10.1016/j.matbio.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  2. Frangogiannis NG (2016) Fibroblast-extracellular matrix interactions in tissue fibrosis. Curr Pathobiol Rep 4:11–18. https://doi.org/10.1007/s40139-016-0099-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hinz B, McCulloch CA, Coelho NM (2019) Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 379:119–128. https://doi.org/10.1016/j.yexcr.2019.03.027

    Article  CAS  PubMed  Google Scholar 

  4. Horowitz JC, Thannickal VJ (2019) Mechanisms for the resolution of organ fibrosis. Physiology (Bethesda) 34:43–55. https://doi.org/10.1152/physiol.00033.2018

    Article  CAS  Google Scholar 

  5. Pakshir P, Hinz B (2018) The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 68–69:81–93. https://doi.org/10.1016/j.matbio.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  6. Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    Article  CAS  Google Scholar 

  7. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  Google Scholar 

  8. Klingberg F, Hinz B, White ES (2013) The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 229:298–309. https://doi.org/10.1002/path.4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741

    Article  CAS  Google Scholar 

  10. Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157:657–663

    Article  CAS  Google Scholar 

  11. Chaponnier C, Goethals M, Janmey PA, Gabbiani F, Gabbiani G, Vandekerckhove J (1995) The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo. J Cell Biol 130:887–895

    Article  CAS  Google Scholar 

  12. Clement S, Hinz B, Dugina V, Gabbiani G, Chaponnier C (2005) The N-terminal Ac-EEED sequence plays a role in {alpha}-smooth-muscle actin incorporation into stress fibers. J Cell Sci 118:1395–1404

    Article  CAS  Google Scholar 

  13. Hinz B, Lagares D (2020) Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 16:11–31. https://doi.org/10.1038/s41584-019-0324-5

    Article  CAS  PubMed  Google Scholar 

  14. Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D (2020) Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 11:1920. https://doi.org/10.1038/s41467-020-15647-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, Rojas M, Lafyatis R (2019) Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 78:1379–1387. https://doi.org/10.1136/annrheumdis-2018-214865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Layton TB, Williams L, McCann F, Zhang M, Fritszche M, Colin-York H, Cabrita M, Ng MTH, Feldmann M, Samson S, Furniss D, Xie W, Nanchahal J (2020) Cellular census of human fibrosis defines functionally distinct stromal cell types and states. Nat Commun 11:2768. https://doi.org/10.1038/s41467-020-16264-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Pure E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20:174–186. https://doi.org/10.1038/s41568-019-0238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Affo S, Yu LX, Schwabe RF (2017) The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 12:153–186. https://doi.org/10.1146/annurev-pathol-052016-100322

    Article  CAS  Google Scholar 

  19. Liao Z, Tan ZW, Zhu P, Tan NS (2019) Cancer-associated fibroblasts in tumor microenvironment—accomplices in tumor malignancy. Cell Immunol 343:103729. https://doi.org/10.1016/j.cellimm.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  20. Kisseleva T (2017) The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology 65:1039–1043. https://doi.org/10.1002/hep.28948

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smith-Clerc J, Hinz B (2010) Immunofluorescence detection of the cytoskeleton and extracellular matrix in tissue and cultured cells. Methods Mol Biol 611:43–57. https://doi.org/10.1007/978-1-60327-345-9_4

    Article  PubMed  Google Scholar 

  22. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  23. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159:1009–1020

    Article  CAS  Google Scholar 

  24. Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab. Invest 63:21–29

    CAS  Google Scholar 

  25. Chaponnier C, Gabbiani G (2016) Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle. F1000Res 5:416. https://doi.org/10.12688/f1000research.8154.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dugina V, Zwaenepoel I, Gabbiani G, Clement S, Chaponnier C (2009) Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci 122:2980–2988. https://doi.org/10.1242/jcs.041970

    Article  CAS  PubMed  Google Scholar 

  27. El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, Bellusci S (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21:166–177. https://doi.org/10.1016/j.stem.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  28. Lemos DR, Duffield JS (2018) Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci Transl Med 10:eaan5174. https://doi.org/10.1126/scitranslmed.aan5174

    Article  CAS  PubMed  Google Scholar 

  29. Soliman H, Paylor B, Scott RW, Lemos DR, Chang C, Arostegui M, Low M, Lee C, Fiore D, Braghetta P, Pospichalova V, Barkauskas CE, Korinek V, Rampazzo A, MacLeod K, Underhill TM, Rossi FMV (2020) Pathogenic potential of Hic1-expressing cardiac stromal progenitors. Cell Stem Cell 26:205–220. e208. https://doi.org/10.1016/j.stem.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  30. Di Carlo SE, Peduto L (2018) The perivascular origin of pathological fibroblasts. J Clin Invest 128:54–63. https://doi.org/10.1172/JCI93558

    Article  PubMed  PubMed Central  Google Scholar 

  31. Prunotto M, Bruschi M, Gunning P, Gabbiani G, Weibel F, Ghiggeri GM, Petretto A, Scaloni A, Bonello T, Schevzov G, Alieva I, Bochaton-Piallat ML, Candiano G, Dugina V, Chaponnier C (2015) Stable incorporation of alpha-smooth muscle actin into stress fibers is dependent on specific tropomyosin isoforms. Cytoskeleton (Hoboken) 72:257–267. https://doi.org/10.1002/cm.21230

    Article  CAS  Google Scholar 

  32. Arnoldi R, Chaponnier C, Gabbiani G, Hinz B (2012) In: Hill J (ed) Muscle: fundamental biology and mechanisms of disease. Elsevier Inc, Amsterdam, pp 1183–1195

    Chapter  Google Scholar 

  33. Christen T, Bochaton-Piallat ML, Neuville P, Rensen S, Redard M, van Eys G, Gabbiani G (1999) Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation. Circ Res 85:99–107

    Article  CAS  Google Scholar 

  34. Hinz B (2016) In: Ågren MS (ed) Wound healing biomaterials. Vol. I: Therapies and regeneration. Woodhead Publishing Limited, Springer Science and Business Media Publishing, Cambridge, UK, pp 69–100

    Chapter  Google Scholar 

  35. Taha IN, Naba A (2019) Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 63:417–432. https://doi.org/10.1042/EBC20190001

    Article  CAS  PubMed  Google Scholar 

  36. Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128:45–53. https://doi.org/10.1172/JCI93557

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O, Mann M (2015) Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 11:819. https://doi.org/10.15252/msb.20156123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    Article  CAS  Google Scholar 

  39. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111. https://doi.org/10.1083/jcb.122.1.103

    Article  CAS  PubMed  Google Scholar 

  40. Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Investig 68:696–707

    CAS  PubMed  Google Scholar 

  41. Hinz B, Gabbiani G (2003) Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90:993–1002

    Article  CAS  Google Scholar 

  42. Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM, Costell M, Alman BA, Genot E, Hinz B (2014) Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol 207:283–297. https://doi.org/10.1083/jcb.201402006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith-Clerc J, Hinz B (2010) Histology protocols. Springer, New York, pp 43–57

    Book  Google Scholar 

  44. Desmoulière A, Rubbia-Brandt L, Abdiu A, Walz T, Macieira-Coelho A, Gabbiani G (1992) Alpha-smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by gamma-interferon. Exp Cell Res 201:64–73

    Article  Google Scholar 

  45. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin Is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14:2508–2519

    Article  CAS  Google Scholar 

  46. Lodyga M, Cambridge E, Karvonen HM, Pakshir P, Wu B, Boo S, Kiebalo M, Kaarteenaho R, Glogauer M, Kapoor M, Ask K, Hinz B (2019) Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta. Sci Signal 12:eaao3469. https://doi.org/10.1126/scisignal.aao3469

    Article  CAS  PubMed  Google Scholar 

  47. Papetti M, Shujath J, Riley KN, Herman IM (2003) FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci 44:4994–5005

    Article  Google Scholar 

  48. Serini G, Gabbiani G (1996) Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth factor-beta isoforms: an in vivo and in vitro study. Wound Repair Regen 4:278–287

    Article  CAS  Google Scholar 

  49. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Article  CAS  Google Scholar 

  50. Carnemolla B, Borsi L, Zardi L, Owens RJ, Baralle FE (1987) Localization of the cellular-fibronectin-specific epitope recognized by the monoclonal antibody IST-9 using fusion proteins expressed in E. coli. FEBS Lett 215:269–273

    Article  CAS  Google Scholar 

  51. Modarressi A, Pietramaggiori G, Godbout C, Vigato E, Pittet B, Hinz B (2010) Hypoxia impairs skin myofibroblast differentiation and function. J Invest Dermatol 130:2818–2827. https://doi.org/10.1038/jid.2010.224

    Article  CAS  PubMed  Google Scholar 

  52. Ravikumar S, Surekha R, Thavarajah R (2014) Mounting media: an overview. J Dr NTR Univ Health Sci 3:1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank to Dr. Giulio Gabbiani for kindly providing α-SMA antibody and the staff of the Collaborative Advanced Microscopy Labs of Dentistry (CAMiLoD) (Faculty of Dentistry, University of Toronto) for technical support. Schemes were produced with Biorender (biorender.com). The research of BH is supported by a foundation grant from the Canadian Institutes of Health Research (#375597) and support from the John Evans Leadership funds (#36050 and #38861) and innovation funds (“Fibrosis Network, #36349”) from the Canada Foundation for Innovation (CFI) and the Ontario Research Fund (ORF). FY is recipient of a Mary H. Beatty Fellowship from the School of Graduate Studies, University of Toronto. Fereshteh Younesi and Dong Ok Son contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Hinz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Younesi, F.S., Son, D.O., Firmino, J., Hinz, B. (2021). Myofibroblast Markers and Microscopy Detection Methods in Cell Culture and Histology. In: Hinz, B., Lagares, D. (eds) Myofibroblasts. Methods in Molecular Biology, vol 2299. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1382-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1382-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1381-8

  • Online ISBN: 978-1-0716-1382-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics