Skip to main content
Log in

Analysis of Contact Stress and Fatigue Crack Growth of Transmission Shaft

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The finite element model and fracture mechanic theory are applied to analyze the contact stress and fatigue crack growth (FCG) path in three dimensions for a transmission shaft, which owns the initial crack and runs with the periodic load. The study found that the periodic load generates a non-proportional stress intensity factor history (SIF) output in the root of the splines. A modified method based on Hertz theory and AGMA (American Gear Manufacture Association) standard is utilized to analyze contact stress with considering the crack growth. From this, it is feasible to predict FCG path in three dimensions for a cracked component. The comparison between the simulation and experiment illustrates that the crack growth path is sensitive to the location and magnitude of loads. Contact regions of stress and fracture mechanic parameters should be deeply analyzed and known before predicting FCG path in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(T_{M}\) :

Main torque (77.51 N*m)

\(T_{S}\) :

Sub-cycle torque (7.75 N*m)

\(T_{M} /T_{S}\) :

Cyclic ratio (1:2667)

\(F_{{n_{i} }} (i = 1,2, \ldots ,24)\) :

Normal force on spline surface (N)

\(F_{{t_{i} }}\) :

Tangential force on spline surface (N)

\(F_{{r_{i} }}\) :

Radial force (N)

\(S_{i} (i = 1,2, \ldots ,9)\) :

Different stages of the FCG test

\(\sigma_{x} , \sigma_{y}\) :

Stress of crack front on the x-axis and y-axis (MPa)

\(\Delta K_{i} (i = {\text{I}},\; {\text{II}})\) :

Magnitude of \(K_{{\text{I}}}\) and \(K_{{{\text{II}}}}\)

\(\sigma_{\theta }\) :

Circumference stress (MPa)

\(\alpha_{i} (i = 1, \ldots ,9)\) :

Offset angle from contact stress to initial tangential force (degree)

θ :

Crack growth angle (radian)

\({\text{d}}a_{i}\) :

Increment of crack length

\({\text{d}}N_{i}\) :

Increment of cyclic times

\(a_{x} , a_{y}\) :

Semimajor and semiminor axes of the crack (mm)

r :

Radius of torque

\(T_{N}\) :

Teeth count of interior splines

C, m :

Material constant

\(\Delta K_{{{\text{eq}}}}\) :

Magnitude of equivalent SIF

References

  1. J.S. Millan, I. Armendariz, J.G, Martınez, R. Gonzalez, Strategies for static failure analysis on aerospace structures. ISBN: 9780128009505. Chapter 1, pp. 20–26. Chapter 2, pp. 34–43, Chapter 5, pp. 88–98

  2. Y. Feng, F.Z. Yuan, T.Z. Dan, Simulation analysis of gear contact stress in reduction gearbox. J. Phys. Conf. Ser. 1748, 062072 (2021). https://doi.org/10.1088/1742-6596/1748/6/062072

    Article  Google Scholar 

  3. Y.S. Zhai, J. Mu, R.G. Yun et al., Analysis of tooth surface contact stress of involute spur gear. J. Phys. Conf. Ser. 2133, 012037 (2021). https://doi.org/10.1088/1742-6596/2133/1/012037

    Article  Google Scholar 

  4. S.H. Wu, S.J. Tsai, Contact stress analysis of skew conical involute gear drives in approximate line contact. Mech. Mach. Theory. 44, 1658–1676 (2009). https://doi.org/10.1016/j.mechmachtheory.2009.01.010

    Article  Google Scholar 

  5. G. Vukelic, D. Pastorcic, G. Vizentin, Failure analysis of a crane gear shaft. Proc. Struct. Integr. 18, 406–412 (2019)

    Google Scholar 

  6. V.I. Medvedev, A.E. Volkov, M.A. Volosova et al., Mathematical model and algorithm for contact stress analysis of gears with multi-pair contact. Mech. Mach. Theory. 86, 156–171 (2015). https://doi.org/10.1016/j.mechmachtheory.2014.12.005

    Article  Google Scholar 

  7. I.G. Pereze, J.L. Iserte, A. Fuentes, Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact. Mech. Mach. Theory. 46, 765–783 (2011). https://doi.org/10.1016/j.mechmachtheory.2011.01.014

    Article  Google Scholar 

  8. W.J. Qin, C.Y. Guan, An investigation of contact stresses and crack initiation in spur gears based on finite element dynamics analysis. Int. J. Mech. Sci. 83, 96–103 (2014). https://doi.org/10.1016/j.ijmecsci.2014.03.035

    Article  Google Scholar 

  9. Y.G. Wei, X.J. Zhang, Y.K. Liu, Theoretical research on the maximum contact stress of involute spur cylindrical gear pairs in the external meshing process, in 2010 International Conference on Mechanic Automation and Control Engineering. 26–28 June 2010, (Wuhan). Pp. 491–495. https://doi.org/10.1109/MACE.2010.5536561

  10. S.S. Patil, S. Karuppanan, I. Atanasovska, A.A. Wahab, Contact stress analysis of helical gear pairs, including frictional coefficients. Int. J. Mech. Sci. 85, 205–211 (2014). https://doi.org/10.1016/j.ijmecsci.2014.05.013

    Article  Google Scholar 

  11. S.C. Hwang, J.H. Lee, D.H. Lee, S.H. Han, K.H. Lee, Contact stress analysis for a pair of mating gears. Math. Comput. Model. 57, 40–49 (2013). https://doi.org/10.1016/j.mcm.2011.06.055

    Article  Google Scholar 

  12. G. Vukelic, D. Pastorcic, G. Vizentin, Z. Bozic, Failure Investigation of a Crane Gear Damage. Eng. Fail. Anal. 115, 104613 (2020). https://doi.org/10.1016/j.engfailanal.2020.104613

    Article  Google Scholar 

  13. J. Pedrero, M. Pleguezuelos, M. Muñoz, Critical stress and load conditions for pitting calculations of involute spur and helical gear teeth. Mech. Mach. Theory. 46, 425–437 (2011). https://doi.org/10.1016/j.mechmachtheory.2010.12.001

    Article  Google Scholar 

  14. G. Metra, M. Somani, N. Babu, T.T. Watts, Contact stress analysis on composite spur gear using finite element method. Mater. Today Proc. 5, 13585–13592 (2018). https://doi.org/10.1016/j.matpr.2018.02.354

    Article  Google Scholar 

  15. X.F. Qin, R. Pang, X.G. Zhao, F. Li, Fracture failure analysis of internal teeth of ring gear used in reducer of coal mining machine. Eng. Fail. Anal. 84, 70–76 (2018). https://doi.org/10.1016/j.engfailanal.2017.08.022

    Article  CAS  Google Scholar 

  16. X.F. Qin, J. Liu, X.G. Zhao, F. Li, R.Q. Pang, Fracture failure analysis of transmission gear shaft in a bidirectional gear pump. Eng. Fail. Anal. 118, 104886 (2020). https://doi.org/10.1016/j.engfailanal.2020.104886

    Article  Google Scholar 

  17. W. Muhammad, K.M. Deen, Failure analysis of water pump shaft. J Fail. Anal. and Preven. 10, 161–166 (2010). https://doi.org/10.1007/s11668-010-9332-0

    Article  Google Scholar 

  18. Z.L. Gao, B.Q. Huo, J.J. Zhang, Z.N. Jiang, Failure investigation of gear teeth fracture of seawater pump in a diesel engine. Eng. Fail. Anal. 105, 1079–1092 (2019). https://doi.org/10.1016/j.engfailanal.2019.07.050

    Article  CAS  Google Scholar 

  19. B. James, A. Hudgins, Handbook of materials failure analysis with case studies from the oil and gas industry. ISBN: 9780081001172. Chapter 1, pp. 33–36, Chapter 3, pp. 56–60

  20. L.E. Spievak, P.A. Wawrzynek, A.R. Ingraffea, D.G. Lewicki, Simulating fatigue crack growth in spiral bevel gears. Eng. Fract. Mech. 68, 53–76 (2001). https://doi.org/10.1016/S0013-7944(00)00089-8

    Article  Google Scholar 

  21. M. Fonte, L. Reis, F. Romeiro, B. Li, M. Freitas, The effect of steady torsion on fatigue crack growth in shafts. Int. J. Fatigue. 28, 609–617 (2006). https://doi.org/10.1016/j.ijfatigue.2005.06.051

    Article  CAS  Google Scholar 

  22. J.R. Yates, M. Zanganeh, R.A. Tomlinson, M.W. Brown, F.A. Diaz Garrido, Crack paths under mixed mode loading. Eng. Fract. Mech. 75, 319–330 (2008). https://doi.org/10.1016/j.engfracmech.2007.05.014

    Article  Google Scholar 

  23. D.X. Jiang, C. Liu, Crack growth prediction of the steam turbine generator shaft. In 9th International Conference on Damage Assessment of Structures, (DAMAS2011). St Anne’s College, University of Oxford, IOP, July 2011, (2011) pp. 11–13. https://doi.org/10.1088/1742-6596/305/1/012023

  24. L.K. Ge, C.Q. Yuan, Z.W. Guo, X.P. Yan, Prediction and evaluation of cracks on thrust shaft. In The 3rd International Conference on Transportation Information and Safety, (Wuhan), IEEE, June 25–28, (2015) pp. 861–864. https://doi.org/10.1109/ICTIS.2015.7232153.

  25. F. Cura, A. Mura, C. Rosso, Crack propagation behavior in planet gears. In 21st European Conference on Fracture, (Catania). Structural Integrity Procedia, ECF21, 20–24 June 2016, pp. 3610–3616. https://doi.org/10.1016/j.prostr.2016.06.450.

  26. K. Suga, M. Kikuchi, Y. Wada, H. Kawai, Study on fatigue growth of multi-surface flaws in shaft under rotary bending by S-FEM. Eng. Fract. Mech. 174, 207–214 (2017). https://doi.org/10.1016/j.engfracmech.2016.11.001

    Article  Google Scholar 

  27. P. Rubio, J. Bernal, L. Rubio, B. Muñoz-Abella, Study of the propagation of concave semi-elliptical shaped breathing cracks in rotating shafts. Int. J. Fatigue. 129, 105214 (2019). https://doi.org/10.1016/j.ijfatigue.2019.105214

    Article  Google Scholar 

  28. A. Soloba, A. Grbovića, Ž Božićb, S.A. Sedmakk, XFEM based analysis of fatigue crack growth in damaged wing-fuselage attachment lug. Eng. Fail. Anal. 11, 1–9 (2020). https://doi.org/10.1016/j.engfailanal.2020.104516

    Article  Google Scholar 

  29. H.W. Ye, Z.C. Duan, S.Q. Tang et al., Fatigue crack growth and interaction of bridge wire with multiple surface cracks. Eng. Fail. Anal. 116, 104739 (2020). https://doi.org/10.1016/j.engfailanal.2020.104739

    Article  Google Scholar 

  30. Y.H. Dong, X.F. He, X.N. Sun et al., Fatigue crack growth of a corner crack at the edge of a hole. Int. J. Fatigue. 139, 105699 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105699

    Article  Google Scholar 

  31. R. Langloisa, R. Cusset et al., Multi-partner benchmark experiment of fatigue crack growth measurements. J. Eng. Fract. Mech. 235, 107157 (2020). https://doi.org/10.1016/j.engfracmech.2020.107157

    Article  Google Scholar 

  32. M. Fossati, M. Pagani, M. Giglio et al., Fatigue crack propagation in a helicopter component subjected to impact damage. Def. Technol. 2(5), 1–13 (2020). https://doi.org/10.1016/j.dt.2020.02.005

    Article  Google Scholar 

  33. A.R. Maligno, S. Rajaratnam, S.B. Leen et al., A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques. Eng. Fract. Mech. 77, 94–111 (2010). https://doi.org/10.1016/j.engfracmech.2009.09.017

    Article  Google Scholar 

  34. M.C. Baietto, E. Pierres, A. Gravouil et al., Fretting fatigue crack growth simulation based on a combined experimental and XFEM strategy. Int. J. Fatigue. 47, 31–43 (2013). https://doi.org/10.1016/j.ijfatigue.2012.07.007

    Article  Google Scholar 

  35. P.C. Paris, F. Erdogan, A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–553 (1963)

    Article  CAS  Google Scholar 

  36. F. Ergodan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963)

    Article  Google Scholar 

  37. D. Zhang, P. D. Zhong, C.H. Tao, Z.S Lei, Failure Analysis (National Defense Industry Press, Beijing, 2013), pp. 54–62.

  38. H.A. Richard, M. Sander, Fatigue Crack Growth: Detect-Assess-Avoid (Springer International Publishing, 2016), pp. 113–151. https://doi.org/10.1007/978-3-319-32534-7

  39. S. Glodez, S. Pehan, J. Flasker, Experimental results of the fatigue crack growth in a gear tooth root. Int. J. Fatigue. 20(9), 669–675 (1998). https://doi.org/10.1016/S0142-1123(98)00040-1

    Article  Google Scholar 

  40. AGMA standards. (http://www.agma.org/)

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Grant No. 52075443). Basic Research Program of Natural Science of Shaanxi Province of China (No.2020JM-113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Hertz Theory

Hertz theory is based on the elastic mechanic, which can be used to describe the local stress of contact objects, it has three assumptions:(a) The contact objects are linear elastic bodies; (b)The contact area is smooth; (c)The size of the contact area is an infinitesimal variable compared with the cylinder curvature radius. This contact relation can illustrate in Fig. 

Fig. 22
figure 22

Schematic diagram of Hertz contact model

22.

The contact stress (elliptic in dash area) of two cylinders is:

$$ \sigma_{\max } = \sqrt {\frac{{F_{s} }}{\pi b}\left( {\frac{{\frac{1}{{\rho_{1} }} + \frac{1}{{\rho_{2} }}}}{{\frac{{1 - \mu_{1}^{2} }}{{E_{1} }} + \frac{{1 - \mu_{2}^{2} }}{{E_{2} }}}}} \right)} $$
(17)

where \({\text{F}}_{{\text{s}}}\) is the normal stress of contact faces, b stands for the length of the contact line, \({\uprho }_{{\text{i}}} {\text{(i = 1,2)}}\), μ, and E represents the curvature radius, Poisson ratio, and elastic modulus of contact objects.

AGMA Standard

The definition and parameters of the AGMA standard are presented as follows [40]:

$$ \sigma_{\max } = C_{p} \sqrt {\frac{{F_{t} }}{{b\text{d}I}}\left( {\frac{\cos \beta }{{0.95CR}}} \right)K_{u} K_{v} (0.93K_{m} )} $$
(18)
$$ C_{p} = 0.564\sqrt {\frac{1}{{\left( {1 - \mu_{1}^{2} } \right)/E_{1} + \left( {1 - \mu_{2}^{2} } \right)/E_{2} }}} $$
(19)

where E and μ stand for Young’s modulus and Poisson ratio.

$$ I = \frac{\sin \alpha \cos \alpha }{2}\frac{i}{i + 1} $$
(20)

where \(i = \frac{{d_{2} }}{{d_{1} }} \) is the speed ratio, α is the transverse pressure angle.

$$ CR = \frac{{\sqrt {\left( {R_{1} + a} \right)^{2} - R_{b1}^{2} } + \sqrt {\left( {R_{2} + a} \right)^{2} - R_{b2}^{2} } - (R_{1} + R_{2} )\sin \alpha }}{\pi m\cos \alpha } $$
(21)

where R, \({\text{R}}_{{\text{b}}}\), and α represent the pitch circle radius, base circle radius, and addendum, respectively. Suffix 1 is for the interior spline and 2 is for the flange, m is the modulus that equals 2.5 mm.

$$ K_{u} = \left[ {\frac{{78 + \left( {200V} \right)^{\frac{1}{2}} }}{78}} \right]^{\frac{1}{2}} $$
(22)

V is rotation velocity or pitch line velocity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yu, T., Shang, B. et al. Analysis of Contact Stress and Fatigue Crack Growth of Transmission Shaft. J Fail. Anal. and Preven. 23, 465–483 (2023). https://doi.org/10.1007/s11668-023-01592-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01592-0

Keywords

Navigation