Skip to main content
Log in

Rolling Contact Fatigue Resistance of Cryogenically Treated AISI 440C Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AISI 440C is a high carbon martensitic stainless steel, primarily used in bearing applications. For this study, one group of AISI 440C steel disks was quenched in oil and tempered. Another group was soaked in liquid nitrogen (− 196 °C) immediately after quenching for 5 h and then tempered. The resulting microstructures were analyzed as well as the rolling contact fatigue (RCF) performance using two methodologies, with and without artificial defects. It was found that the microstructural modifications generated by the cryogenic treatments did not improve significantly the RCF resistance of the material. However, this work supports the use of artificial defects as a valid methodology for conducting accelerated rolling contact fatigue experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Das, A.K. Dutta, and K.K. Ray, Correlation of Microstructure with Wear Behaviour of Deep Cryogenically Treated AISI, D2 Steel, Wear, 2009, 267, p 1371–1380. https://doi.org/10.1016/j.Wear.2008.12.051

    Article  CAS  Google Scholar 

  2. V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, and A. Kortmann, Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment, Metall. Mater. Trans. A, 2014, 45, p 2453–2465. https://doi.org/10.1007/s11661-014-2202-8

    Article  CAS  Google Scholar 

  3. B. Podgornik, V. Leskovšek, and J. Vizintin, Influence of Deep-Cryogenic Treatment on Tribological Properties of P/M High-Speed Steel, Mater. Manuf. Process., 2009, 24, p 734–738. https://doi.org/10.1080/10426910902809339

    Article  CAS  Google Scholar 

  4. B. Podgornik, I. Paulin, B. Zajec, S. Jacobson, and V. Leskovšek, Deep Cryogenic Treatment of Tool Steels, J. Mater. Process. Technol., 2016, 229, p 398–406. https://doi.org/10.1016/j.jmatprotec.2015.09.045

    Article  CAS  Google Scholar 

  5. G. Prieto and W.R. Tuckart, Influence of Cryogenic Treatments on the Wear Behavior of AISI, 420 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(11), p 5262–5271. https://doi.org/10.1007/s11665-017-2986-y

    Article  CAS  Google Scholar 

  6. P. Baldissera and C. Delprete, Deep Cryogenic Treatment of AISI, 302 Stainless Steel: Part II—Fatigue and Corrosion, Mater. Des., 2010, 31, p 4731–4737. https://doi.org/10.1016/j.matdes.2010.05.015

    Article  CAS  Google Scholar 

  7. P.J. Singh, S.L. Mannan, T. Jayakumar, and D.R.G. Achar, Fatigue Life Extension of Notches in AISI, 304L Weldments Using Deep Cryogenic Treatment, Eng. Fail. Anal., 2005, 12, p 263–271. https://doi.org/10.1016/j.engfailanal.2004.03.008

    Article  CAS  Google Scholar 

  8. J.D. Darwin, D. Mohan Lal, and G. Nagarajan, Optimization of Cryogenic Treatment to Maximize the Wear Resistance of 18% Cr Martensitic Stainless Steel by Taguchi Method, J. Mater. Process. Technol., 2008, 195, p 241–247. https://doi.org/10.1016/j.jmatprotec.2007.05.005

    Article  CAS  Google Scholar 

  9. M. Koneshlou, K. Meshinchi Asl, and F. Khomamizadeh, Effect of Cryogenic Treatment on Microstructure, Mechanical and Wear Behaviors of AISI, H13 Hot Work Tool Steel, Cryogenics (Guildf), 2011, 51, p 55–61. https://doi.org/10.1016/j.Cryogenics.2010.11.001

    Article  CAS  Google Scholar 

  10. K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou, and Z. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4 V Alloy, Mater. Sci. Eng., A, 2013, 584, p 170–176. https://doi.org/10.1016/j.msea.2013.07.021

    Article  CAS  Google Scholar 

  11. J. Liu, G. Li, D. Chen, and Z. Chen, Effect of Cryogenic Treatment on Deformation Behavior of As-Cast AZ91 Mg Alloy, Chin. J. Aeronaut., 2012, 25, p 931–936. https://doi.org/10.1016/S1000-9361(11)60464-0

    Article  CAS  Google Scholar 

  12. H.H. Trieu, L.H. Morris, M.E. Kaufman, R. Hood, and L.S. Jenkins, Investigation of Cryogenic Treatment of UHMWPE, in 16th Southern Biomedical Engineering Conference, IEEE, Apr 4-6 (Biloxi, USA, 1997), pp. 90–91.

  13. K.K. Ray and D. Das, Improved Wear Resistance of Steels by Cryotreatment: The Current State of Understanding, Mater. Sci. Technol., 2017, 33, p 340–354. https://doi.org/10.1080/02670836.2016.1206292

    Article  CAS  Google Scholar 

  14. D. Das, A.K. Dutta, and K.K. Ray, Sub-zero Treatments of AISI, D2 Steel: Part I. Microstructure and Hardness, Mater. Sci. Eng., A, 2010, 527, p 2182–2193. https://doi.org/10.1016/j.msea.2009.10.070

    Article  CAS  Google Scholar 

  15. A. Bensely, A. Prabhakaran, D. Mohan Lal, and G. Nagarajan, Enhancing the Wear Resistance of Case Carburized Steel (En 353) by Cryogenic Treatment, Cryogenics (Guildf), 2005, 45, p 747–754. https://doi.org/10.1016/j.Cryogenics.2005.10.004

    Article  CAS  Google Scholar 

  16. V. Leskovšek and B. Ule, Influence of Deep Cryogenic Treatment on Microstructure, Mechanical Properties and Dimensional Changes of Vacuum Heat-Treated High-Speed Steel, Heat Treat. Met., 2002, 29, p 72–76

    Google Scholar 

  17. F. Meng, K. Tagashira, and H. Sohma, Wear Resistance and Microstructure of Cryogenic Treated Fe-1.4Cr-1C Bearing Steel, Scr. Metall. Mater., 1994, 31, p 865–868

    Article  CAS  Google Scholar 

  18. F. Meng, T. Kohsuke, R. Azuma, and H. Sohma, Role of Eta-Carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int., 1994, 34, p 205–210

    Article  CAS  Google Scholar 

  19. J. Huang, Y. Zhu, X. Liao, I. Beyerlein, M. Bourke, and T. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel, Mater. Sci. Eng., A, 2003, 339, p 241–244. https://doi.org/10.1016/S0921-5093(02)00165-X

    Article  Google Scholar 

  20. G. Prieto, J.E. Perez Ipiña, and W.R. Tuckart, Cryogenic Treatments on AISI, 420 Stainless Steel: Microstructure and Mechanical Properties, Mater. Sci. Eng., A, 2014, 605, p 236–243. https://doi.org/10.1016/j.msea.2014.03.059

    Article  CAS  Google Scholar 

  21. A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, Y.N. Petrov, and V.G. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng., A, 2010, 527, p 7027–7039. https://doi.org/10.1016/j.msea.2010.07.056

    Article  CAS  Google Scholar 

  22. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov, and Y.V. Tarusin, Low-Temperature Martensitic Transformation in Tool Steels in Relation to their Deep Cryogenic Treatment, Acta Mater., 2013, 61, p 1705–1715. https://doi.org/10.1016/j.actamat.2012.11.045

    Article  CAS  Google Scholar 

  23. F. Farhani, K.S. Niaki, S.E. Vahdat, and A. Firozi, Study of Effects of Deep Cryotreatment on Mechanical Properties of 1.2542 Tool Steel, Mater. Des., 2012, 42, p 279–288. https://doi.org/10.1016/j.matdes.2012.05.059

    Article  CAS  Google Scholar 

  24. A. Akhbarizadeh, A. Shafyei, and M.A. Golozar, Effects of Cryogenic Treatment on Wear Behavior of D6 Tool Steel, Mater. Des., 2009, 30, p 3259–3264. https://doi.org/10.1016/j.matdes.2008.11.016

    Article  CAS  Google Scholar 

  25. F.J. da Silva, S.D. Franco, Á.R. Machado, E.O. Ezugwu, and A.M. Souza, Performance of Cryogenically Treated HSS Tools, Wear, 2006, 261, p 674–685. https://doi.org/10.1016/j.Wear.2006.01.017

    Article  Google Scholar 

  26. F. Cajner, V. Leskovšek, D. Landek, and H. Cajner, Effect of Deep-Cryogenic Treatment on High Speed Steel Properties, Mater. Manuf. Process., 2009, 24, p 743–746. https://doi.org/10.1080/10426910902809743

    Article  CAS  Google Scholar 

  27. H. Wang, J. Li, C.-B. Shi, J. Li, and B. He, Evolution of Carbides in H13 Steel in Heat Treatment Process, Mater. Trans., 2017, 58, p 152–156. https://doi.org/10.2320/matertrans.m2016268

    Article  CAS  Google Scholar 

  28. D. Das, A.K. Dutta, and K.K. Ray, On the Refinement of Carbide Precipitates by Cryotreatment in AISI, D2 Steel, Philos. Mag., 2009, 89, p 55–76. https://doi.org/10.1080/14786430802534552

    Article  CAS  Google Scholar 

  29. V. Firouzdor, E. Nejati, and F. Khomamizadeh, Effect of Deep Cryogenic Treatment on Wear Resistance and Tool Life of M2 HSS Drill, J. Mater. Process. Technol., 2008, 206, p 467–472

    Article  CAS  Google Scholar 

  30. G. Prieto, W.R. Tuckart, and J.E. Perez Ipiña, Influence of a Cryogenic Treatment on the Fracture Toughness of an AISI, 420 Martensitic Stainless Steel, Mater. Tehnol., 2017, 51(4), p 591–596. https://doi.org/10.17222/mit.2016.126

    Article  CAS  Google Scholar 

  31. S. Li, N. Min, J. Li, X. Wu, C. Li, and L. Tang, Experimental Verification of Segregation of Carbon and Precipitation of Carbides due to Deep Cryogenic Treatment for Tool Steel by Internal Friction Method, Mater. Sci. Eng. A, 2013, 575, p 51–60. https://doi.org/10.1016/j.msea.2013.03.070

    Article  CAS  Google Scholar 

  32. M. Villa, K. Pantleon, and M.A.J. Somers, Evolution of Compressive Strains in Retained Austenite During Sub-zero Celsius Martensite Formation and Tempering, Acta Mater., 2014, 65, p 383–392. https://doi.org/10.1016/j.actamat.2013.11.007

    Article  CAS  Google Scholar 

  33. A. Idayan, A. Gnanavelbabu, and K. Rajkumar, Influence of Deep Cryogenic Treatment on the Mechanical Properties of AISI, 440C Bearing Steel, Procedia Eng., 2014, 97, p 1683–1691. https://doi.org/10.1016/j.proeng.2014.12.319

    Article  CAS  Google Scholar 

  34. K. Clemons, C. Lorraine, G. Salgado, A. Taylor, J. Ogren, P. Umin, and O.S. Es-Said, Effects of Heat Treatments on Steels for Bearing Applications, J. Mater. Eng. Perform., 2007, 16, p 592–596. https://doi.org/10.1007/s11665-007-9075-6

    Article  CAS  Google Scholar 

  35. J.R. Yang, T.H. Yu, and C.H. Wang, Martensitic Transformations in AISI, 440C Stainless Steel, Mater. Sci. Eng. A., 2006, 438-440, p 276–280. https://doi.org/10.1016/j.msea.2006.02.098

    Article  CAS  Google Scholar 

  36. A.S. Pandkar, N. Arakere, and G. Subhash, Microstructure-Sensitive Accumulation of Plastic Strain due to Ratcheting in Bearing Steels Subject to Rolling Contact Fatigue, Int. J. Fatigue, 2014, 63, p 191–202. https://doi.org/10.1016/j.ijFatigue.2014.01.029

    Article  CAS  Google Scholar 

  37. A. Bhattacharyya, G. Subhash, and N. Arakere, Evolution of Subsurface Plastic Zone due to Rolling Contact Fatigue of M-50 NiL Case Hardened Bearing Steel, Int. J. Fatigue, 2014, 59, p 102–113. https://doi.org/10.1016/j.ijFatigue.2013.09.010

    Article  CAS  Google Scholar 

  38. C. Qing, S. Eryn, Z. Dongmei, G. Juwen, and F. Zhonghe, Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and its Application in Bearing Steel, Wear, 1991, 147, p 285–294

    Article  Google Scholar 

  39. R. Dommarco, P. Bastias, G. Hahn, and C. Rubin, The Use of Artificial Defects in the 5-Ball-Rod Rolling Contact Fatigue Experiments, Wear, 2002, 252, p 430–437. https://doi.org/10.1016/S0043-1648(01)00899-7

    Article  CAS  Google Scholar 

  40. T.E. Tallian, The Failure Atlas for Hertz Contact Machine Elements, ASME Press, New York, 1992

    Google Scholar 

  41. F. Sadeghi, B. Jalalahmadi, T.S. Slack, N. Raje, and N.K. Arakere, A Review of Rolling Contact Fatigue, J. Tribol., 2009, 131, p 041403. https://doi.org/10.1115/1.3209132

    Article  Google Scholar 

  42. V. Gupta, P. Bastias, G.T. Hahn, and C.A. Rubin, Influence of Indent Geometry on Repeated Two-Dimensional Rolling Contact, J. Tribol., 1995, 117, p 655. https://doi.org/10.1115/1.2831531

    Article  Google Scholar 

  43. R.C. Dommarco, P.C. Bastias, C.A. Rubin, and G.T. Hahn, The Influence of Material Build Up Around Artificial Defects on Rolling Contact Fatigue Life and Failure Mechanism, Wear, 2006, 260, p 1317–1323. https://doi.org/10.1016/j.Wear.2005.09.009

    Article  CAS  Google Scholar 

  44. G.F. Vander Voort, Metallography: Principles and Practice, ASM International, Cleveland, 1999

    Google Scholar 

  45. F. de Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J.C. Olivo-Marin, Icy: an Open Bioimage Informatics Platform for Extended Reproducible Research, Nat. Methods, 2012, 9, p 690–696. https://doi.org/10.1038/nmeth.2075

    Article  CAS  Google Scholar 

  46. P. Moens, M. Teutónico, and R. Dommarco, Desarrollo de un Equipo para Evaluar la Resistencia a la Fatiga de Contacto por Rodadura (Development of a Test Rig for Rolling Contact Fatigue), Jornadas SAM-CONAMET 2000, November 2-5, 2000, (Viña del Mar), SAM-CONAMET (in spanish)

  47. B.J. Hamrock and D. Dowson, Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results, J. Lubr. Technol., 1977, 99, p 264–275

    Article  CAS  Google Scholar 

  48. K.L. Johnson, Contact Mechanics and the Wear of Metals, Wear, 1995, 190, p 162–170

    Article  CAS  Google Scholar 

  49. G.T. Hahn, V. Bhargava, and Q. Chen, The Cyclic Stress-Strain Properties, Hysteresis Loop Shape, and Kinematic Hardening of Two High-Strength Bearing Steels, Metall. Mater. Trans. A, 1990, 21, p 653–665

    Article  Google Scholar 

  50. B.J. Hamrock and D. Brewe, Simplified Solution for Stresses and Deformations, J. Lubr. Technol., 1983, 105, p 171–177

    Article  Google Scholar 

  51. D.W. Hetzner and W. Van Geertruyden, Crystallography and Metallography of Carbides in High Alloy Steels, Mater. Charact., 2008, 59, p 825–841

    Article  CAS  Google Scholar 

  52. A. Bensely, A. Prabhakaran, and G. Nagarajan, Enhancing the Wear Resistance of Case Carburized Steel (En 353) by Cryogenic Treatment, Mater. Sci. Eng. A, 2008, 479, p 229–235

    Article  Google Scholar 

  53. Y.Y. Su, L.H. Chiu, T.L. Chuang, C.L. Huang, C.Y. Wu, and K.C. Liao, Retained Austenite Amount Determination Comparison in JIS SKD11 Steel Using Quantitative Metallography and X-Ray Diffraction Methods, Adv. Mater. Res., 2012, 482-484, p 1165–1168. https://doi.org/10.4028/www.scientific.net/AMR.482-484.1165

    Article  CAS  Google Scholar 

  54. P. Rycerz, A. Olver, and A. Kadiric, Propagation of Surface Initiated Rolling Contact Fatigue Cracks in Bearing Steel, Int. J. Fatigue, 2017, 97, p 29–38. https://doi.org/10.1016/j.ijFatigue.2016.12.004

    Article  CAS  Google Scholar 

  55. S. Coulon, F. Ville, and T. Lubrecht, Experimental Investigations of Rolling Contact Fatigue of Dented Surfaces Using Artificial Defects, Life Cycle Tribol., 2005, https://doi.org/10.1016/S0167-8922(05)80071-9

    Article  Google Scholar 

  56. G. Lundberg, A. Palmgren, Dynamic Capacity of Rolling Bearings, Generalstabens litografiska anstalts förlag, Stockholm, 1947

    Google Scholar 

  57. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985

    Book  Google Scholar 

  58. B. Alfredsson, M. Olsson, A Mechanism for Contact Fatigue, Fatigue 2000—Fatigue and Durability Assessment of Materials, Components and Structures, M.R. Blache, P.A. Blackmore, April 10-12 (Cambridge, United Kingdom, 2000), pp. 379–386.

  59. A.F. Bower, The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks, J. Tribol., 1988, 110(4), p 704–711. https://doi.org/10.1115/1.3261717

    Article  Google Scholar 

  60. J. Dahlberg and B. Alfredsson, Influence of a Single Axisymmetric Asperity on Surface Stresses During Dry Rolling Contact, Int. J. Fatigue, 2007, 29, p 909–921

    Article  CAS  Google Scholar 

  61. P. Lamagnere, R. Fougeres, G. Lormand, A. Vincent, D. Girodin, G. Dudragne, and F. Vergne, A Physically Based Model for Endurance Limit of Bearing Steels, J. Tribol., 1998, 120, p 421–426. https://doi.org/10.1115/1.2834565

    Article  CAS  Google Scholar 

  62. A.A. Lubrecht, Surface Damage-Comparison of Theoretical and Experimental Endurance Lives of Rolling Bearings, in Proceedings of the Japan International Tribology Conference on Nagoya 1990, Japanese Society of Tribologists, Oct 29-Nov 1 (Nagoya, Japan, 1990)

  63. G. Lormand, P. Meynaud, A. Vincent, G. Baudry, D. Girodin, and G. Dudragne, From Cleanliness to Rolling Fatigue Life of Bearings—A New Approach, Bearing. Steels Into 21st Century, J. Hoo and W. Green, Ed., ASTM International, West Conshohocken, 1998,

    Google Scholar 

  64. J.M. Torralba, L. Esteban, E. Bernardo, and M. Campos, Understanding Contribution of Microstructure to Fracture Behaviour of Sintered Steels, Powder Metall., 2014, 57, p 357–364. https://doi.org/10.1179/1743290114Y.0000000119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to the National Agency of Promotion of Science and Technology (ANPCyT) for the Grant PICT 2013-0616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Prieto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, G., Mandri, A., Rabbia, G. et al. Rolling Contact Fatigue Resistance of Cryogenically Treated AISI 440C Steel. J. of Materi Eng and Perform 29, 2216–2226 (2020). https://doi.org/10.1007/s11665-020-04777-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04777-y

Keywords

Navigation