Skip to main content
Log in

The cyclic stress-strain properties, hysteresis loop shape, and kinematic hardening of two high-strength bearing steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Measurements of the shapes of the cyclic, stress-strain hysteresis loops obtained from AISI 1070 (HRC 60) and AISI 52100 (HRC 62) steels subjected to constant stress and constant plastic strain amplitude cycles in torsion are presented. The study examines plastic strain amplitudes in the range of 0.0002 ≤ Δεp/2 0.0015, which are similar to the strain amplitudes produced by rolling contact. The effects of a mean stress are also evaluated. The cyclic hardening of the two steels and other changes in the character of the loops during the cyclic life, 34 ≤N f 2156, are defined. A three-parameter, bilinear, elastic-linear-kinematic-hardening-plastic (ELKP) model is shown to describe the multivalued cyclic stress-strain relations of these steels. The principal material properties of the model, in addition to the elastic modulus, the kinematic yield strength, and the plastic modulus, are evaluated. The ELKP properties define the material’s resistance to cyclic plasticity, the loop shape and area (plastic energy dissipation), the conventional cyclic stress-strain curve, the endurance limit, and the rolling contact shakedown pressure. The implications for rolling contact are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Merwin and K.L. Johnson:Proc. Inst. Mech. Eng., 1963, vol. 177, pp. 676–85.

    Google Scholar 

  2. K.L. Johnson and J.A. Jefferis: Proc. Inst. of Mechanical Engineers Symp. on Rolling Contact Fatigue, London, 1963, pp. 50–61.

  3. D.A. Hills and A. Sackfield:J. Strain Anal., 1984, vol. 19, pp. 9–14.

    Article  Google Scholar 

  4. R.W. Landgraf, J. Morrow, and T. Endo:J. Mater., 1969, vol. 4, pp. 176–88.

    Google Scholar 

  5. T. Endo and J. Morrow:J. Mater., 1969, vol. 4, pp. 159–75.

    Google Scholar 

  6. H.R. Jhansale:J. Eng. Mater. Technol., 1975, vol. 97, pp. 33–38.

    Google Scholar 

  7. V. Bhargava, G.T. Hahn, G. Ham, S. Kulkami, and C.A. Rubin: inContact Mechanics and Wear of Rail/Wheel Systems II, G. Gladwell, H. Ghonem, and J. Kalousek, eds., University of Waterloo Press, Waterloo, ON, Canada, 1987, pp. 133–46.

    Google Scholar 

  8. V. Bhargava, G.T. Hahn, and C.A. Rubin:Wear, 1988, vol. 122, pp. 267–83.

    Article  Google Scholar 

  9. G.T. Hahn, V. Bhargava, C.A. Rubin, Q. Chen, and K. Kim:J. Tribol., 1987, vol. 109, pp. 618–26.

    Google Scholar 

  10. R. Hill:The Mathematical Theory of Plasticity, Oxford University Press, London, 1950, pp. 23–33.

    Google Scholar 

  11. W. Prager:J. Appl. Mech., 1956, vol. 23, pp. 493–96.

    Google Scholar 

  12. H. Ziegler:Q. Appl. Math., 1959, vol. 17, pp. 55–65.

    Google Scholar 

  13. Z. Mroz:Acta Mech., 1967, vol. 7, pp. 199–212.

    Article  Google Scholar 

  14. D.L. McDowell:J. Appl. Mech., 1985, vol. 52, pp. 298–302.

    Article  Google Scholar 

  15. V. Bhargava, G.T. Hahn, and C.A. Rubin: Metall. Trans. A, in press.

  16. H. Swahn, P.C. Becker, and O. Vingsbo:Metall. Trans. A, 1976, vol. 7A, pp. 1099–1110.

    CAS  Google Scholar 

  17. H. Swahn, P.C. Becker, and O. Vingsbo:Met. Sci., 1976, vol. 10, pp. 35–39.

    CAS  Google Scholar 

  18. A.P. Voskamp, R. Osterlund, P.C. Becker, and O. Vingsbo:Met. Technol., 1980, vol. 7, pp. 14–21.

    CAS  Google Scholar 

  19. A.P. Voskamp:J. Tribol., 1985, vol. 107, pp. 359–66.

    Article  Google Scholar 

  20. W. Zhong-Guang, R. Rahka, D. Nnonen, and Laird:Acta Metall., 1985, vol. 33, pp. 2129–41.

    Article  Google Scholar 

  21. R.H. Richman and R.W. Landgraf:Metall. Trans. A, 1975, vol. 6A, pp. 955–64.

    CAS  Google Scholar 

  22. P.N. Thielen, M.E. Fine, and R.A. Fournelle:Acta Metall., 1976, vol. 24, pp. 1–10.

    Article  Google Scholar 

  23. D. Eifler and E. Macherauch: inDefects Fracture and Fatigue, G.C. Sih and J.W. Drowan, eds., Martinus Nijhoff Publishers, The Hague, 1983, pp. 171–82.

    Google Scholar 

  24. L.F. VanSwam, R.M. Pelloux, and N.J. Grant:Metall. Trans. A, 1975, vol. 6A, pp. 45–54.

    Google Scholar 

  25. A.M. Kumar, S.M. Kulkami, V. Bhargava, G.T. Hahn, and C.A. Rubin: Final Report on NASA Project NAS8-36651, May 30, 1987.

  26. S. Kulkarni, C.A. Rubin, V. Bhargava, and G.T. Hahn: ASME J. Appl. Mech., in press.

  27. H. Sunwoo, M.E. Fine, M. Meshii, and D.H. Stone:Metall. Trans. A, 1982, vol. 13A, pp. 2035–47.

    Google Scholar 

  28. K.Y. Kim: M.S. Dissertation, Vanderbilt University, Nashville, TN, 1987.

    Google Scholar 

  29. R.J. Asaro:Acta Metall., 1975, vol. 23, pp. 1255–65.

    Article  Google Scholar 

  30. D.K. Bullens:Steel and Its Heat Treatment, John Wiley & Sons, New York, NY, 1938, vol. 1, p. 37.

    Google Scholar 

  31. G. Sachs, R. Sell, and V. Weiss: NASA TN D-239, Feb. 1960.

  32. O. Zwirlein and H. Schlicht: ASTM STP 771, 1982, pp. 358-79.

  33. J.J. Bush, W.L. Grube, and G.H. Robinson:Trans. ASME, 1961, vol. 54, pp. 390–412.

    CAS  Google Scholar 

  34. H.K. Lorosch: ASTM STP 771, 1982, pp. 275-92.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Q. CHEN, formerly Visiting Scholar at Vanderbilt University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, G.T., Bhargava, V. & Chen, Q. The cyclic stress-strain properties, hysteresis loop shape, and kinematic hardening of two high-strength bearing steels. Metall Trans A 21, 653–665 (1990). https://doi.org/10.1007/BF02671936

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671936

Keywords

Navigation