Skip to main content
Log in

Grain Refinement in Al-Mg-Si Alloy TIG Welds Using Transverse Mechanical Arc Oscillation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Reduction in grain size in weld fusion zones (FZs) presents the advantages of increased resistance to solidification cracking and improvement in mechanical properties. Transverse mechanical arc oscillation was employed to obtain grain refinement in the weldment during tungsten inert gas welding of Al-Mg-Si alloy. Electron backscattered diffraction analysis was carried out on AA6061-AA4043 filler metal tungsten inert gas welds. Grain size, texture evolution, misorientation distribution, and aspect ratio of weld metal, PMZ, and BM have been observed at fixed arc oscillation amplitude and at three different frequencies levels. Arc oscillation showed grain size reduction and texture formation. Fine-grained arc oscillated welds exhibited better yield and ultimate tensile strengths and significant improvement in percent elongation. The obtained results were attributed to reduction in equivalent circular diameter of grains and increase in number of subgrain network structure of low angle grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Kou, Welding Metallurgy, 2nd ed., Wiley, New York, 2003, p 13–16

    Google Scholar 

  2. G. Madhusudhan Reddy, P. Mastanaiah, K. Sata Prasad, and T. Mohandas, Microstructure and Mechanical Property Correlations in AA 6061 Aluminium Alloy Friction Stir Welds, Trans. Indian Inst. Met., 2009, 62(1), p 49–58

    Article  Google Scholar 

  3. V. Malin, Aluminum Welded Joints, Study of Metallurgical Phenomena in the HAZ of 6061–T6, Weld. J., 1995, 74(9), p 305-s–318-s

    Google Scholar 

  4. R.R. Ambriz, G. Barrera, R. García, and V.H. López, The Microstructure and Mechanical Strength of Al-6061-T6 GMA Welds Obtained with the Modified Indirect Electric Arc Joint, Mater. Des., 2010, 3, p 2978–2986

    Article  Google Scholar 

  5. H. Yunjia, R.H. Frost, and D.L. Olson, Edwards, Grain Refinement of Aluminum Weld Metal, Weld. J., 1989, 68, p 280 s

    Google Scholar 

  6. M.J. Dvornak, R.H. Frost, and D.L. Olson, The Weldability and Grain Refinement of Al 2.2 Li 2.7 Cu Alloy, Weld. J., 1989, 68, p 327s–335s

    Google Scholar 

  7. J.C. Villafuerte and H.W. Kerr, Electromagnetic Stirring and Grain Refinement in Stainless Steel GTA Welds, Weld. J., 1990, 69(1), p 1s–13s

    Google Scholar 

  8. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy, Effect of Pulsed Current and Post Weld Aging Treatment on Tensile Properties of Argon Arc Welded High Strength Aluminum Alloy, Mater. Sci. Eng., A, 2007, 459, p 19–34

    Article  Google Scholar 

  9. S. Kou and Y. Le, Nucleation Mechanisms and Grain Refining of Weld Metal, Weld. J., 1986, 65, p 305–313s

    Google Scholar 

  10. S. Kou and Y. Le, Grain Structure and Solidification Cracking in Oscillated Arc Welds of 5052 Aluminum Alloy, Metall. Trans., 1985, 16A, p 1345–1352

    CAS  Google Scholar 

  11. S. Kou and Y. Le, Improving Weld Quality by Low Frequency Arc Oscillation, Weld. J., 1985, 64(3), p 51s–55s

    Google Scholar 

  12. S. Sundaresan and G.D. Janakiram, Use of Magnetic Arc Oscillation for Grain Refinement of Gas Tungsten Arc Welds in α-β Titanium Alloys, Sci. Technol. Weld. Joining, 1999, 4, p 151

    Article  CAS  Google Scholar 

  13. C.-F. Tseng and W.F. Savage, The Effect of Arc Oscillation, Weld. J., 1971, 51(11), p 777–785

    Google Scholar 

  14. S.R. Koteswara Rao, G. Madhusudhana Reddy, M. Kamaraj, and K. Prasad Rao, Grain Refinement Through Arc Manipulation Techniques in Al-Cu Alloy GTA Welds, Mater. Sci. Eng. A, 2005, 404, p 227–234

    Article  Google Scholar 

  15. G. Madhusudhan Reddy, A. Gokhale, and K. Prasad Rao, Weld Microstructure Refinement in a 1441 Grade Al-Li Alloy, J. Mater. Sci., 1997, 32, p 4117–4126

    Article  Google Scholar 

  16. R. DeNale, and W.E. Lukens, Proc. of Ti-6211 Basic Research Programme, Second Conference, B.B. Rath, B.A. MacDonald, and O.P. Arora, Ed., Office of Naval Research, Arlington, VA, 1984, p 203–228

  17. S. Kou and Y. Le, Alternating Grain Orientation and Weld Solidification Cracking, Metall. Trans. A, 1985, 16, p 1887–1896

    Article  Google Scholar 

  18. J.G. Garland, Weld Pool Solidification and Control, Met. Constr. Br. Weld. J., 1974, 6, p 121–127

    CAS  Google Scholar 

  19. Operational manual “MO-150 Mechanical Oscillator”, Jetline engineering Inc., CA

  20. N.S. Biradar, and R. Raman, Proceedings of the IIW International Conference on Joining, Cutting, and Surfacing Technology, D.V. Kulkarni, M. Samant, S. Krishnan, A. De, J. Krishnan, H. Patel, and A.K Bhaduri, Ed., Chennai, July 17–22, 2011, p 371–379

  21. N.T. Kumbhar, S.K. Sahoo, I. Samajdar, G.K. Dey, and K. Bhanumurthy, Microstructure and Microtextural Studies of Friction Welded Aluminium Alloy 5052, Mater. Des., 2011, 32, p 1657–1666

    Article  CAS  Google Scholar 

  22. Y. Zhang, S.S. Babu, P. Zhang, E.A. Kenik, and G.S. Daehn, Microstructure Characterisation of Magnetic Pulse Welded AA6061-T6 by Electron Backscattered Diffraction, Sci. Technol. Weld. Joining, 2008, 13(5), p 467

    Article  CAS  Google Scholar 

  23. R.W. Messler, Jr., “Principles of Welding”: Processes, Physics, Chemistry, and Metallurgy, Wiley, New York, 1999

    Google Scholar 

  24. T.H. Courtney, Mechanical Behaviour of Materials, McGraw-Hill, Singapore, 1990, p 17

    Google Scholar 

  25. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988, p 195–197

    Google Scholar 

  26. R. Clark and B. Chalmers, Mechanical of Aluminium Bicrystals, Acta Metallurgica, 1954, 2(1), p 80–86

    Article  CAS  Google Scholar 

  27. C.H. Li, E.H. Edwards, J. Washburn, and E.R. Parker, Stress-Induced Movement of Crystal Boundaries, Acta Metallurgica, 1953, 1(2), p 223–229

    Article  CAS  Google Scholar 

  28. A. Kostrivas and J.C. Lippold, A Method for Studying Weld Fusion Boundary Microstructure Evaluation in Aluminum Alloys, Weld. J., 2000, 79(1), p 1s–8s

    Google Scholar 

  29. A. Hirosc, H. Todaka, H. Yamaoka, N. Kurosawa, and K. Kobayashi, Quantitative Evaluation of Softened Region in Weld Heat Affected Zones of 6061-T6 Aluminum Alloy—Characterizing of the Laser Beam Welding Process, Metall. Mater. Trans. A, 1999, 30A(8), p 2115–2124

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M/S. Bhakshi Kempharma, Thane, Mumbai for providing the alloy material AA6061 aluminum alloy for carrying out necessary experiments for the current research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Biradar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biradar, N.S., Raman, R. Grain Refinement in Al-Mg-Si Alloy TIG Welds Using Transverse Mechanical Arc Oscillation. J. of Materi Eng and Perform 21, 2495–2502 (2012). https://doi.org/10.1007/s11665-012-0207-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0207-2

Keywords

Navigation