Skip to main content
Log in

Effect of Growth Temperature on Physical Properties of MoS2 Thin Films Synthesized by CVD

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Due to the application of two-dimensional crystals in different fields, high-quality growth of these materials has attracted more attention from researchers. High-quality monolayer MoS2 with single crystals up to 20 microns in size has been formed on Si substrate by the chemical vapor deposition method. A comprehensive study was carried out on the prepared MoS2 thin films using optical microscopy, atomic force microscopy, x-ray diffraction (XRD) analysis, and Raman spectroscopy. It was concluded that the growth temperature affected the morphology and structure of the synthesized MoS2 sheets. The XRD spectra confirmed that the peak intensity and resolution were highly dependent on the growth temperature. Raman spectroscopy showed that monolayer MoS2 was grown on the silicon substrate at higher temperature, as proved by the Raman frequency difference (∼ 19 cm−1) between two characteristic modes (\( {\hbox{E}}^{1}_{{2{\rm{g}}}} \) and A1g). Atomic force micrographs of the films showed the evolution of the surface morphology as a function of the growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    CAS  Google Scholar 

  2. A. Shekaari and M.R. Abolhassani, Chin. J. Phys. 55, 105 (2017).

    Article  CAS  Google Scholar 

  3. K.S. Novoselov and A.C. Neto, Phys. Scr. 146, 014006 (2012).

    Article  Google Scholar 

  4. W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Nat. Mater. 12, 246 (2013).

    Article  CAS  Google Scholar 

  5. C. Dean, A.F. Young, L. Wang, I. Meric, G.H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim, and J. Hone, Solid State Commun. 152, 1275 (2012).

    Article  CAS  Google Scholar 

  6. T. Palacios, Nat. Nanotechnol. 6, 464 (2011).

    Article  CAS  Google Scholar 

  7. M. Osada and T. Sasaki, Adv. Mater. 24, 209 (2012).

    Article  Google Scholar 

  8. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  9. B. Radisavljevic, A. Radenovic, J. Brivio, I.V. Giacometti, and A. Kis, Nat. Nanotechnol 6, 147 (2011).

    Article  CAS  Google Scholar 

  10. C.P. Lu, G. Li, J. Mao, L.M. Wang, and E.Y. Andrei, Nano Lett. 14, 4628 (2014).

    Article  CAS  Google Scholar 

  11. Q. Luan, C.L. Yang, M.S. Wang, and X.G. Ma, Chin. J. Phys. 55, 1930 (2017).

    Article  CAS  Google Scholar 

  12. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).

    Article  CAS  Google Scholar 

  13. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).

    Article  CAS  Google Scholar 

  14. B. Radisavljevic, M.B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).

    Article  CAS  Google Scholar 

  15. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  16. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  17. H.L. Zhuang and R.G. Hennig, J. Phys. Chem. C 117, 20440 (2013).

    Article  CAS  Google Scholar 

  18. K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, and C.S. Lai, Nano Lett. 12, 1538 (2012).

    Article  CAS  Google Scholar 

  19. Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, and H. Zhang, Small 8, 2994 (2012).

    Article  CAS  Google Scholar 

  20. Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).

    Article  CAS  Google Scholar 

  21. H. Wang, L. Yu, Y.H. Lee, W. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.J. Li, J. Kong, T. Palacios (2013) American Physical Society, p. 461. https://doi.org/10.1109/iedm.2012.6478980.

  22. A. Ramasubramaniam, D. Naveh, and E. Towe, Phys. Rev. B 84, 205325 (2011).

    Article  Google Scholar 

  23. M.Y. Lei, C.M. Liu, Y.G. Zhou, Z.H. Yan, S.B. Han, W. Liu, X. Xiang, and X.T. Zu, Chin. J. Phys. 54, 51 (2016).

    Article  CAS  Google Scholar 

  24. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).

    Article  CAS  Google Scholar 

  25. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012).

    Article  CAS  Google Scholar 

  26. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou, Small 8, 966 (2012).

    Article  CAS  Google Scholar 

  27. M.R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D.N. Nath, W. Lu, Y. Wu, and S. Rajan, Appl. Phys. Lett. 102, 252108 (2013).

    Article  Google Scholar 

  28. Y. Wang, X. Luo, N. Zhang, M.R. Laskar, L. Ma, Y. Wu, S. Rajan, W. Lu, in Microwave Measurement Conference, 2013 82nd ARFTG IEEE, pp. 1–3.

  29. S. Ganorkar, J. Kim, and Y.H. Kim, J. Phys. Chem. Solids 87, 32 (2015).

    Article  CAS  Google Scholar 

  30. Y. Cao, X. Luo, S. Han, C. Yuan, Y. Yang, Q. Li, T. Yu, and S. Ye, Chem. Phys. Lett. 631, 30 (2015).

    Article  Google Scholar 

  31. G. Tang, J. Sun, C. Wei, K. Wu, X. Ji, S. Liu, H. Tang, and C. Li, Mater. Lett. 86, 9 (2012).

    Article  CAS  Google Scholar 

  32. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).

    Article  CAS  Google Scholar 

  33. X.L. Li and Y.D. Li, Chem. -A Eur. J. 9, 2726 (2003).

    Article  CAS  Google Scholar 

  34. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012).

    Article  CAS  Google Scholar 

  35. R. Shahzad, T. Kim, and S.W. Kang, Thin Solid Films 641, 79 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Department of Physics Science and Research Branch, Islamic Azad University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hantehzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardahe, M., Hantehzadeh, M.R. & Ghoranneviss, M. Effect of Growth Temperature on Physical Properties of MoS2 Thin Films Synthesized by CVD. J. Electron. Mater. 49, 1002–1008 (2020). https://doi.org/10.1007/s11664-019-07796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07796-1

Keywords

Navigation