Skip to main content
Log in

Amorphous In-Si-O Films Fabricated via Solution Processing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the characteristics of an amorphous oxide semiconductor In-Si-O fabricated via solution processing. In-Si-O thin films with nominal silicon concentration of 0 at.%, 1 at.%, 3 at.%, 5 at.%, 9 at.%, 50 at.%, and 100 at.% were fabricated via spin coating. The films were characterized via thermal desorption spectroscopy (TDS), x-ray reflectivity, x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and electrical resistance measurements. TDS analysis suggested that organic residues, such as organic functional groups from raw materials and solvents, were almost completely desorbed from the films at approximately 400°C. The XRD and EXAFS analyses confirmed that pure In2O3 crystallizes at approximately 350°C and that the crystallization temperature increases with the silicon concentration. In-Si-O films with silicon concentration above 3 at.% exhibited high electrical resistance, indicating that films fabricated via spin coating contain few oxygen vacancies. These results suggest that In-Si-O thin films have significant potential for use as channels in field-effect transistors designed for next-generation flat-panel displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).

    Article  Google Scholar 

  2. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).

    Article  Google Scholar 

  3. T. Kamiya and H. Hosono, NPG Asia Mater. 2, 15 (2010).

    Article  Google Scholar 

  4. H.Q. Chiang, B.R. McFarlane, D. Hong, R.E. Presley, and J.F. Wager, J. Non-Cryst. Solids 354, 2826 (2008).

    Article  Google Scholar 

  5. K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, and H. Hosono, J. Appl. Phys. 114, 163713 (2013).

    Article  Google Scholar 

  6. S. Aikawa, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 103, 172105 (2013).

    Article  Google Scholar 

  7. N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M.-F. Lin, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 104, 102103 (2014).

    Article  Google Scholar 

  8. N. Mitoma, S. Aikawa, W. Ou-Yang, X. Gao, T. Kizu, M.-F. Lin, A. Fujiwara, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 106, 042106 (2015).

    Article  Google Scholar 

  9. S. Aikawa, N. Mitoma, T. Kizu, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 106, 192103 (2015).

    Article  Google Scholar 

  10. B.J. Norris, J. Anderson, J.F. Wager, and D.A. Keszler, J. Phys. D Appl. Phys. 36, L105 (2003).

    Article  Google Scholar 

  11. M. Niederberger, G. Garnweitner, J. Buha, J. Polleux, J. Ba, and N. Pinna, J. Sol-Gel Sci. Technol. 40, 259 (2006).

    Article  Google Scholar 

  12. D.-H. Lee, Y.-J. Chang, G.S. Herman, and C.-H. Chang, Adv. Mater. 19, 843 (2007).

    Article  Google Scholar 

  13. J. Smith, L. Zeng, R. Khanal, K. Stallings, A. Facchetti, J.E. Medvedeva, M.J. Bedzyk, and T.J. Marks, Adv. Electron. Mater. 1, 1500146 (2015).

    Article  Google Scholar 

  14. X. Yu, J. Smith, N. Zhou, L. Zeng, P. Guo, Y. Xia, A. Alvarez, S. Aghion, H. Lin, J. Yu, R.P.H. Chang, M.J. Bedzyk, R. Ferragut, T.J. Marks, and A. Facchetti, Proc. Natl. Acad. Sci. USA 11, 3217 (2015).

    Article  Google Scholar 

  15. D.E. Walker, M. Major, M.B. Yazdi, A. Klyszcz, M. Haeming, K. Bonrad, C. Melzer, W. Donner, and H. von Seggern, ACS Appl. Mater. Interfaces 4, 6835 (2012).

    Article  Google Scholar 

  16. J.H. Jeong, H.W. Yang, J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, J. Song, and C.S. Hwang, Electrochem. Solid State Lett. 11, H157 (2008).

    Article  Google Scholar 

  17. M. Yasaka, Rigaku J. 26, 1 (2010).

    Google Scholar 

  18. M. Björck and G. Andersson, J. Appl. Crystallogr. 40, 1174 (2007).

    Article  Google Scholar 

  19. B. Ravel and M. Newville, J. Synchrotron Rad. 12, 537 (2005).

    Article  Google Scholar 

  20. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006).

    Article  Google Scholar 

  21. W. Ou-Yang, N. Mitoma, T. Kizu, X. Gao, M.-F. Lin, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 105, 163503 (2014).

    Article  Google Scholar 

  22. J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, and J.S. Moodera, Nat. Mater. 5, 298 (2006).

    Article  Google Scholar 

  23. D.E. Proffit, D.B. Buchholz, R.P.H. Chang, M.J. Bedzyk, T.O. Mason, and Q. Ma, J. Appl. Phys. 106, 113524 (2009).

    Article  Google Scholar 

  24. H. Masai, Y. Yamada, S. Okumura, T. Yanagida, Y. Fujimoto, Y. Kanemitsu, and T. Ina, Sci. Rep. 5, 13646 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, H.E., Hoang, H., Nakamura, T. et al. Amorphous In-Si-O Films Fabricated via Solution Processing. J. Electron. Mater. 46, 3610–3614 (2017). https://doi.org/10.1007/s11664-017-5506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5506-9

Keywords

Navigation