Skip to main content
Log in

Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents

  • Nanomaterials and Thin Films
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nonaqueous solution routes to metal oxide nanoparticles are a valuable alternative to the well-known aqueous sol-gel processes, offering advantages such as high crystallinity at low temperatures, robust synthesis parameters and ability to control the crystal growth without the use of surfactants. In the first part of the review, we give an overview of the various nonaqueous routes to metal oxides, their surface functionalization and their assembly into well-defined nanostructures. However, we will strongly focus on surfactant-free processes developed in our group. Within the various reaction systems such as metal halides—benzyl alcohol, metal alkoxides—benzyl alcohol, metal alkoxides—ketones, metal acetylacetonates—benzyl alcohol and metal acetylacetonates—benzylamine we will discuss representative examples in order to show the versatility of this approach. The careful characterization of the organic species in the final reaction mixtures provides information about possible condensation mechanisms. Depending on the system several reaction pathways have been postulated: (i) elimination of organic ethers as result of condensation between two metal alkoxide precursors; (ii) C–C bond formation between the alkoxy ligand of the metal alkoxide precursor and the solvent benzyl alcohol under formation of a metal hydroxyl species, which can undergo further condensation; (iii) ketimine and aldol-like condensation steps, which in the metal acetylacetonate systems are preceded by a solvolysis of the precursor, involving C–C bond cleavage.

In the second part of the paper we will focus on the synthesis of indium oxide nanoparticles using different precursors and solvents. Indium oxide represents an instructive example how the oxide precursors and the solvents influence the particle morphology. These findings make it possible to tailor particle size and shape of a particular metal oxide by the appropriate choice of the reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Henglein, Chem. Rev. 89, 1861 (1989).

    Article  CAS  Google Scholar 

  2. A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).

    Article  CAS  Google Scholar 

  3. C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).

    Article  CAS  Google Scholar 

  4. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).

    Article  CAS  Google Scholar 

  5. L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Article  CAS  Google Scholar 

  6. B.L. Cushing, V.L. Kolesnichenko, and C.J. O’Connor, Chem. Rev. 104, 3893 (2004).

    Article  CAS  Google Scholar 

  7. E. Matijevic, Chem. Mater. 5, 412 (1993).

    Article  CAS  Google Scholar 

  8. A.W. Dearing and E.E. Reid, J. Am. Chem. Soc. 50, 3058 (1928).

    Article  CAS  Google Scholar 

  9. D. Ridge and M. Todd, J. Chem. Soc. 2637 (1949).

  10. W. Gerrard and A.H. Woodhead, J. Chem. Soc. 519 (1951).

  11. W. Gerrard and K.D. Kilburn, J. Chem. Soc. 1536, (1956).

  12. R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 146, 301 (1992).

    Article  CAS  Google Scholar 

  13. R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Mater. Chem. 2, 673 (1992).

    Article  CAS  Google Scholar 

  14. S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).

    CAS  Google Scholar 

  15. P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Mater. Res. Soc. Symp. Proc. 346, 339 (1994).

    CAS  Google Scholar 

  16. P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 6, 1925 (1996).

    Article  CAS  Google Scholar 

  17. P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Chem. Mater. 9, 694 (1997).

    Article  CAS  Google Scholar 

  18. S.C. Goel, M.Y. Chiang, P.C. Gibbons, and W.E. Buhro, Mater. Res. Soc. Symp. Proc. 271, 3 (1992).

    CAS  Google Scholar 

  19. T.J. Trentler, T.E. Denler, J.F. Bertone, A. Agrawal, and V.L. Colvin, J. Am. Chem. Soc. 121, 1613 (1999).

    Article  CAS  Google Scholar 

  20. M. Ivanda, S. Music, S. Popovic, and M. Gotic, J. Mol. Struct. 481, 645 (1999).

    Article  Google Scholar 

  21. T. Hyeon, Chem. Commun. 927, (2003).

  22. M. Niederberger, G. Garnweitner, N. Pinna, and G. Neri, Prog. Solid State Chem. (in print), DOI:10.1016/j.progsolidstchem. 2005.11.032.

  23. C.S. Kim, B.K. Moon, J.H. Park, B.C. Choi, and H.J. Seo, J. Cryst. Growth 257, 309 (2003).

    Article  CAS  Google Scholar 

  24. P.D. Cozzoli, A. Kornowski, and H. Weller, J. Am. Chem. Soc. 125, 14539 (2003).

    Article  CAS  Google Scholar 

  25. Y.W. Jun, M.F. Casula, J.H. Sim, S.Y. Kim, J. Cheon, and A.P. Alivisatos, J. Am. Chem. Soc. 125, 15981 (2003).

    Article  CAS  Google Scholar 

  26. J. Tang, F. Redl, Y. Zhu, T. Siegrist, L.E. Brus, and M.L. Steigerwald, Nano Lett. 5, 543 (2005).

    Article  CAS  Google Scholar 

  27. Z. Zhang, X. Zhong, S. Liu, D. Li, and M. Han, Angew. Chem. Int. Ed. 44, 3466 (2005).

    Article  CAS  Google Scholar 

  28. J. Rockenberger, E.C. Scher, and A.P. Alivisatos, J. Am. Chem. Soc. 121, 11596 (1999).

    Article  Google Scholar 

  29. T. Hyeon, S.S. Lee, J. Park, Y. Chung, and H.B. Na, J. Am. Chem. Soc. 123, 12798 (2001).

    Article  CAS  Google Scholar 

  30. S.H. Sun, and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    Article  CAS  Google Scholar 

  31. F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, and S.P. O’Brien, J. Am. Chem. Soc. 126, 14583 (2004).

    Article  CAS  Google Scholar 

  32. J. Cheon, N.J. Kang, S.M. Lee, J.H. Lee, J.H. Yoon, and S.J. Oh, J. Am. Chem. Soc. 126, 1950 (2004).

    Article  CAS  Google Scholar 

  33. J. Park, E. Lee, N.-M. Hwang, M. Kang, S.C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, and T. Hyeon, Angew. Chem. Int. Ed. 44, 2872 (2005).

    Article  CAS  Google Scholar 

  34. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, and J.T. Park, Angew. Chem. Int. Ed. 43, 1115 (2004).

    Article  CAS  Google Scholar 

  35. D. Zitoun, N. Pinna, N. Frolet, and C. Belin, J. Am. Chem. Soc. 127, 15034 (2005).

    Article  CAS  Google Scholar 

  36. J.-W. Seo, Y.-W. Jun, S.J. Ko, and J. Cheon, J. Phys. Chem. B 109, 5389 (2005).

    Article  CAS  Google Scholar 

  37. X. Sun, Y.W. Zhang, R. Si, and C.H. Yan, Small 1, 1081 (2005).

    Article  CAS  Google Scholar 

  38. T. Yu, J. Joo, J. Park, and T. Hyeon, Angew. Chem. Int. Ed. 44, 7411 (2005).

    Article  CAS  Google Scholar 

  39. M. Yin, C.K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, and S. O’Brien, J. Am. Chem. Soc. 127, 9506 (2005).

    Article  CAS  Google Scholar 

  40. N.R. Jana, Y. Chen, and X. Peng, Chem. Mater. 16, 3931 (2004).

    Article  CAS  Google Scholar 

  41. T. He, D. Chen, X. Jiao, Y. Wang, and Y. Duan, Chem. Mater. 17, 4023 (2005).

    Article  CAS  Google Scholar 

  42. J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.-J. Noh, J.-H. Park, C.J. Bae, J.-G. Park, and T. Hyeon, Adv. Mater. 17, 429 (2005).

    Article  CAS  Google Scholar 

  43. J. Joo, T. Yu, Y.W. Kim, H.M. Park, F.X. Wu, J.Z. Zhang, and T. Hyeon, J. Am. Chem. Soc. 125, 6553 (2003).

    Article  CAS  Google Scholar 

  44. J. Tang, F. Zhang, P. Zoogman, J. Fabbri, S.W. Chan, Y. Zhu, L.E. Brus, and M.L. Steigerwald, Adv. Funct. Mater. 15, 1595 (2005).

    Article  CAS  Google Scholar 

  45. J. Tang, J. Fabbri, R.D. Robinson, Y.M. Zhu, I.P. Herman, M.L. Steigerwald, and L.E. Brus, Chem. Mater. 16, 1336 (2004).

    Article  CAS  Google Scholar 

  46. M. Shim and P. Guyot-Sionnest, J. Am. Chem. Soc. 123, 11651 (2001).

    Article  CAS  Google Scholar 

  47. P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, and M. Lomascolo, J. Phys. Chem. B 107, 4756 (2003).

    Article  CAS  Google Scholar 

  48. J. Joo, S.G. Kwon, J.H. Yu, and T. Hyeon, Adv. Mater. 17, 1873 (2005).

    Article  CAS  Google Scholar 

  49. W.S. Seo, H.H. Jo, K. Lee, and J.T. Park, Adv. Mater. 15, 795 (2003).

    Article  CAS  Google Scholar 

  50. Q. Liu, W. Lu, A. Ma, J. Tang, J. Lin, and J. Fang, J. Am. Chem. Soc. 127, 5276 (2005).

    Article  CAS  Google Scholar 

  51. K. Lee, W.S. Seo, and J.T. Park, J. Am. Chem. Soc. 125, 3408 (2003).

    Article  CAS  Google Scholar 

  52. K. Woo, J. Hong, J.P. Ahn, J.K. Park, and K.J. Kim, Inorg. Chem. 44, 7171 (2005).

    Article  CAS  Google Scholar 

  53. Q. Song and Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (200).

    Article  Google Scholar 

  54. S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, and G.X. Li, J. Am. Chem. Soc. 126, 273 (2004).

    CAS  Google Scholar 

  55. J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, and T. Hyeon, Nat. Mater. 3, 891 (2004).

    Article  CAS  Google Scholar 

  56. A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y.F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, Nano Lett. 4, 2163 (2004).

    Article  CAS  Google Scholar 

  57. M. Niederberger, M.H. Bartl, and G.D. Stucky, Chem. Mater. 14, 4364 (2002).

    Article  CAS  Google Scholar 

  58. M. Niederberger, M.H. Bartl, and G.D. Stucky, J. Am. Chem. Soc. 124, 13642 (2002).

    Article  CAS  Google Scholar 

  59. J. Ba, J. Polleux, M. Antonietti, and M. Niederberger, Adv. Mater. 17, 2509 (2005).

    Article  CAS  Google Scholar 

  60. J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger, J. Am. Chem. Soc. 127, 15595 (2005).

    Article  CAS  Google Scholar 

  61. M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Cölfen, and M. Antonietti, Chem. Mater. 16, 1202 (2004).

    Article  CAS  Google Scholar 

  62. J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger, Adv. Mater. 16, 436 (2004).

    Article  CAS  Google Scholar 

  63. J. Polleux, N. Pinna, M. Antonietti, C. Hess, U. Wild, R. Schlögl, and M. Niederberger, Chem. Eur. J. 11, 3541 (2005).

    Article  CAS  Google Scholar 

  64. R.L. Penn and J.F. Banfield, Am. Mineral. 83, 1077 (1998).

    CAS  Google Scholar 

  65. A.S. Deshpande, N. Pinna, P. Beato, M. Antonietti, and M. Niederberger, Chem. Mater. 16, 2599 (2004).

    Article  CAS  Google Scholar 

  66. A.S. Deshpande, N. Pinna, B. Smarsly, M. Antonietti, and M. Niederberger, Small 1, 313 (2005).

    Article  CAS  Google Scholar 

  67. N. Pinna, M. Antonietti, and M. Niederberger, Colloids Surf. A 250, 211 (2004).

    Article  CAS  Google Scholar 

  68. N. Pinna, G. Garnweitner, M. Antonietti, and M. Niederberger, Adv. Mater. 16, 2196 (2004).

    Article  CAS  Google Scholar 

  69. N. Pinna, G. Neri, M. Antonietti, and M. Niederberger, Angew. Chem. Int. Ed. 43, 4345 (2004).

    Article  CAS  Google Scholar 

  70. M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti, Angew. Chem. Int. Ed. 43, 2270 (2004).

    Article  CAS  Google Scholar 

  71. M. Niederberger, G. Garnweitner, N. Pinna, and M. Antonietti, J. Am. Chem. Soc. 126, 9120 (2004).

    Article  CAS  Google Scholar 

  72. N. Pinna, G. Garnweitner, P. Beato, M. Niederberger, and M. Antonietti, Small 1, 112 (2005).

    Article  Google Scholar 

  73. J. Polleux, A. Gurlo, M. Antonietti, and M. Niederberger, Angew. Chem. Int. Ed. 45, 261 (2006).

    Google Scholar 

  74. G. Garnweitner, M. Antonietti, and M. Niederberger, Chem. Commun. 397 (2004).

  75. G. Garnweitner, J. Hentschel, M. Antonietti, and M. Niederberger, Chem. Mater. 17, 4594 (2005).

    Article  CAS  Google Scholar 

  76. N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, Chem. Mater. 17, 3044 (2005).

    Article  CAS  Google Scholar 

  77. N. Pinna, G. Garnweitner, M. Antonietti, and M. Niederberger, J. Am. Chem. Soc. 127, 5608 (2005).

    Article  CAS  Google Scholar 

  78. A. Vioux, Chem. Mater. 9, 2292 (1997).

    Article  CAS  Google Scholar 

  79. J.N. Hay and H.M. Raval, Chem. Mater. 13, 3396 (2001).

    Article  CAS  Google Scholar 

  80. N.Y. Turova, V.G. Kessler, and S.I. Kucheiko, Polyhedron 10, 2617 (1991).

    Article  CAS  Google Scholar 

  81. V.G. Kessler, K.V. Nikitin, and A.I. Belokon, Polyhedron 17, 2309 (1998).

    Article  CAS  Google Scholar 

  82. G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).

    Article  CAS  Google Scholar 

  83. G. Neri, A. Bonavita, G. Micali, G. Rizzo, S. Galvagno, M. Niederberger, and N. Pinna, Chem. Commun. 6032 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Niederberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederberger, M., Garnweitner, G., Buha, J. et al. Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol-Gel Sci Technol 40, 259–266 (2006). https://doi.org/10.1007/s10971-006-6668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-6668-8

Keywords

Navigation