Skip to main content
Log in

Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile–brittle transition) of cut (∼60 nm ± 15 nm) much lower than the theoretical calculated results (∼387 nm). Moreover, it also led to abnormal load–displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (∼270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K. Tönshoff, W.V. Schmieden, I. Inasaki, W. König, and G. Spur, CIRP Ann. Manuf. Technol. 39, 621 (1990).

    Article  Google Scholar 

  2. I. Zarudi, J. Zou, W. McBride, and L.C. Zhang, Appl. Phys. Lett. 85, 932 (2004).

    Article  Google Scholar 

  3. I. Zarudi, T. Nguyen, and L.C. Zhang, Appl. Phys. Lett. 86, 011922 (2005).

    Article  Google Scholar 

  4. J. Yan, J. Appl. Phys. 95, 2094 (2004).

    Article  Google Scholar 

  5. H. Shin, B. Kim, J. Kim, S. Hwang, A.S. Budiman, H. Son, K. Byun, N. Tamura, M. Kunz, D. Kim, and Y. Joo, J. Electron. Mater. 41, 712 (2012).

    Article  Google Scholar 

  6. A.S. Budiman, G. Illya, V. Handara, W.A. Caldwell, C. Bonelli, M. Kunz, N. Tamura, and D. Verstraeten, Sol. Energy Mater. Sol. Cells 130, 303 (2014).

    Article  Google Scholar 

  7. S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 123 (2016).

    Article  Google Scholar 

  8. Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, and K.G. Nickel, J. Mater. Res. 15, 871 (2000).

    Article  Google Scholar 

  9. U. Schwarz, K. Syassen, K. Takemura, and M. Hanfland, Phys. Rev. Lett. 82, 1197 (1999).

    Article  Google Scholar 

  10. M.C. Kroll, P.D. Kirchner, R.F. Cook, B.J. Hockey, and D.R. Clarke, Phys. Rev. Lett. 60, 2156 (1988).

    Article  Google Scholar 

  11. H. Huang and J. Yan, Scr. Mater. 102, 35 (2015).

    Article  Google Scholar 

  12. D.E. Kim and S.I. Oh, Nanotechnology 17, 2259 (2006).

    Article  Google Scholar 

  13. A. Kailer, Y.G. Gogotsi, and K.G. Nickel, J. Appl. Phys. 81, 3057 (1997).

    Article  Google Scholar 

  14. K. Gaál-Nagy, M. Schmitt, P. Pavone, and D. Strauch, Comput. Mater. Sci. 22, 49 (2001).

    Article  Google Scholar 

  15. V. Domnich, Y. Gogotsi, and S. Dub, Appl. Phys. Lett. 76, 2214 (2000).

    Article  Google Scholar 

  16. B.V. Tanikella, A.H. Somasekhar, A.T. Sowers, R.J. Nemanich, and R.O. Scattergood, Appl. Phys. Lett. 69, 2870 (1996).

    Article  Google Scholar 

  17. T. Tian, R. Morusupalli, H. Shin, H.Y. Son, K.Y. Byun, Y.C. Joo, R. Caramto, L. Smith, Y. Shen, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 101 (2016).

    Article  Google Scholar 

  18. K.N. Rengarajan, I. Radchenko, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 76 (2016).

    Article  Google Scholar 

  19. J. Sun, L. Fang, J. Han, Y. Han, H. Chen, and K. Sun, Comput. Mater. Sci. 82, 140 (2014).

    Article  Google Scholar 

  20. Y. Wang, J. Zou, H. Huang, L. Zhou, B.L. Wang, and Y.Q. Wu, Nanotechnology 18, 465705 (2007).

    Article  Google Scholar 

  21. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  Google Scholar 

  22. J. Yan, H. Takahashi, J.I. Tamaki, X. Gai, H. Harada, and J. Patten, Appl. Phys. Lett. 86, 181913 (2005).

    Article  Google Scholar 

  23. T. Shibata, S. Fujii, E. Makino, and M. Ikeda, Precis. Eng. 18, 129 (1996).

    Article  Google Scholar 

  24. J. Yan, T. Asami, H. Harada, and T. Kuriyagawa, Precis. Eng. 33, 378 (2009).

    Article  Google Scholar 

  25. A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng. A 635, 6 (2015).

    Article  Google Scholar 

  26. A.S. Budiman, S. Han, N. Li, Q. Wei, P. Dickerson, N. Tamura, M. Kunz, and A. Misra, J. Mater. Res. 27, 599 (2012).

    Article  Google Scholar 

  27. J. Yan, T. Asami, and T. Kuriyagawa, Precis. Eng. 32, 186 (2008).

    Article  Google Scholar 

  28. S. Goel, X. Luo, and R.L. Reuben, Tribol. Int. 57, 272 (2013).

    Article  Google Scholar 

  29. Q. Zhang, S. To, Q. Zhao, and B. Guo, Mater. Lett. 172, 48 (2016).

    Article  Google Scholar 

  30. H. Wu and S.N. Melkote, J. Eng. Mater. Technol. T. ASME 134, 41011 (2012).

    Article  Google Scholar 

  31. Z. Cheng, MSc Thesis, Materials Science and Engineering, Georgia Institute of Technology, 2004.

  32. W.J. Zong, T. Sun, D. Li, K. Cheng, and Y.C. Liang, Int. J. Mach. Tools Manuf. 48, 1678 (2008).

    Article  Google Scholar 

  33. Y. Gogotsi, C. Baek, and F. Kirscht, Semicond. Sci. Technol. 14, 936 (1999).

    Article  Google Scholar 

  34. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, Appl. Phys. Lett. 69, 200 (1996).

    Article  Google Scholar 

  35. G. Viera, S. Huet, and L. Boufendi, J. Appl. Phys. 90, 4175 (2001).

    Article  Google Scholar 

  36. I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  Google Scholar 

  37. J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, J. Crain, and R.O. Piltz, Phys. Rev. B 52, 4072 (1995).

    Article  Google Scholar 

  38. S.A. Solin, M. Selders, R.K. Chang, R. Alben, M.F. Thorpe, D. Weaire, and R.J. Kobliska, Phys. Rev. Lett. 29, 725 (1972).

    Article  Google Scholar 

  39. X. Li, J. Lu, B. Liu, and S. Yang, Tribol. Int. 41, 189 (2008).

    Article  Google Scholar 

  40. H. Huang and J. Yan, Semicond. Sci. Technol. 30, 115001 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Project No. 51475109) and the Research Committee of the Hong Kong Polytechnic University (RTRA). In addition, we would like to express our great thanks for the kind help from Mr. Mingtao Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhang, Q., To, S. et al. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading. J. Electron. Mater. 46, 1862–1868 (2017). https://doi.org/10.1007/s11664-016-5251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5251-5

Keywords

Navigation