Skip to main content
Log in

Synthesis of Nanocomposites with Improved Thermoelectric Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Bulk thermoelectric materials are of interest for commercial application in both power generation and Peltier refrigeration. Various synthesis approaches have been developed by our group for high performance bulk thermoelectric materials, such as solvo- or hydrothermal synthesis for nanopowders, hot-pressing, and spark plasma sintering for nanostructured bulk materials, and rapid solidification for metal silicides. In this article we report some of our recent results in the development of high ZT thermoelectric materials, including Bi2Te3-Sb2Te3 nanocomposites and CoSb3 micro/nanocomposites prepared by a powder blending route, and GeTe-AgSbTe2 and Mg2Si-Mg2Sn nanocomposites prepared by an in situ route. The results show various possibilities for improved microstructures and therefore enhanced properties of bulk thermoelectric materials through optimization of the preparation processing based on simple synthesis routes. A high ZT of approximately 1.5 has been obtained in both Bi2Te3-Sb2Te3 and GeTe-AgSbTe2 nanocomposites. Further ZT enhancement of the materials should be possible through the control of the nanopowder morphology during synthesis and the hindering of␣grain growth during sintering, as well as through the optimization of composition and doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007). doi:10.1002/adma.200600527

    Article  CAS  Google Scholar 

  2. X. Sun, Z. Zhang, and M.S. Dresselhaus, Appl. Phys. Lett. 74, 4005 (1999). doi:10.1063/1.123242

    Article  ADS  CAS  Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001). doi:10.1038/35098012

    Article  PubMed  ADS  CAS  Google Scholar 

  4. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007). doi:10.1063/1.2425007

    Article  ADS  Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008). doi:10.1126/science.1156446

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008). doi:10.1063/1.2900960

    Article  ADS  Google Scholar 

  7. R.G. Yang, G. Chen, and M.S. Dresselhaus, Phys. Rev. B 72, 125418 (2005). doi:10.1103/PhysRevB.72.125418

    Article  ADS  Google Scholar 

  8. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006). doi:10.1103/PhysRevLett.96.045901

    Article  PubMed  ADS  Google Scholar 

  9. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005). doi:10.1063/1.1863440

    Article  ADS  Google Scholar 

  10. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004). doi:10.1126/science.1092963

    Article  PubMed  ADS  CAS  Google Scholar 

  11. T.C. Harman, M.P. Walsh, B.E. Laforge, and G.W. Turner, J. Electron. Mater. 34, L19 (2005). doi:10.1007/s11664-005-0083-8

    Article  ADS  CAS  Google Scholar 

  12. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, and J.P. Tu, Appl. Phys. A 80, 1567 (2005). doi:10.1007/s00339-004-2956-8

    Article  ADS  CAS  Google Scholar 

  13. X.B. Zhao, T. Sun, T.J. Zhu, and J.P. Tu, J. Mater. Chem. 15, 1621 (2005). doi:10.1039/b500759c

    Article  CAS  Google Scholar 

  14. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu, and G.S. Cao, J. Alloy. Compd. 417, 269 (2006). doi:10.1016/j.jallcom.2005.09.033

    Article  CAS  Google Scholar 

  15. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu, and G.S. Cao, J. Alloy. Compd. 399, 260 (2005). doi:10.1016/j.jallcom.2005.03.013

    Article  CAS  Google Scholar 

  16. J.L. Mi, T.J. Zhu, X.B. Zhao, and J. Ma, J. Appl. Phys. 101, 054314 (2007). doi:10.1063/1.2436927

    Article  ADS  Google Scholar 

  17. D.G. Ebling, A. Jacquot, M. Jagle, H. Bottner, U. Kuhn, and L. Kirste, Phys. Status Solidi-Rapid Res. Lett. 1, 238 (2007)

    Article  CAS  Google Scholar 

  18. E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005). doi:10.1021/ja051653o

    Article  PubMed  CAS  Google Scholar 

  19. J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007). doi:10.1021/ja071875h

    Article  PubMed  CAS  Google Scholar 

  20. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. Dangelo, A. Downey, T. Hogan, and M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006). doi:10.1002/adma.200502770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X.B., Yang, S.H., Cao, Y.Q. et al. Synthesis of Nanocomposites with Improved Thermoelectric Properties. J. Electron. Mater. 38, 1017–1024 (2009). https://doi.org/10.1007/s11664-009-0698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0698-2

Key words

Navigation