Skip to main content

Advertisement

Log in

Preparation and Thermoelectric Performance of BaTiO3/Bi0.5Sb1.5Te3 Composite Materials

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of xBaTiO3/Bi0.5Sb1.5Te3 (xBTO/BST) nanocomposite thermoelectric materials were prepared by the method of ultrasonic dispersion combined spark plasma sintering. The thermoelectric performance was systematically investigated in the temperature range from 300 K to 500 K. Combined with the analysis of phase composition and microstructure, the results indicated that the BTO nanoparticles were uniformly dispersed in the grain boundaries of the BST matrix, which can optimize carrier concentration and produce an energy filtering effect to a certain extent to improve the Seebeck coefficient, and also reduced the thermal conductivity. The highest ZT value of the sample with x = 0.2% was achieved 1.2 at 340 K, which was 20% larger than that of the matrix. This work is helpful for exploring new composite systems to improve the thermoelectric performance of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. P. Wei, W.Y. Zhao, C.L. Dong, X. Yang, J. Yu, and Q.J. Zhang, Acta Mater. 59, 3244 (2011).

    Article  CAS  Google Scholar 

  4. W.S. Liu, Q. Jie, H.S. Kim, and Z.F. Ren, Acta Mater. 87, 357 (2015).

    Article  CAS  Google Scholar 

  5. Q. Zhang, Y.M. Sun, W. Xu, and D.B. Zhu, Adv. Mater. 26, 6829 (2014).

    Article  CAS  Google Scholar 

  6. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  CAS  Google Scholar 

  7. J.H. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M.M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317 (2013).

    Article  CAS  Google Scholar 

  8. J.W. Zhang, R.H. Liu, N. Cheng, Y.B. Zhang, J.H. Yang, C. Uher, X. Shi, L.D. Chen, and W.Q. Zhang, Adv. Mater. 26, 3848 (2014).

    Article  CAS  Google Scholar 

  9. Z.W. Chen, X.Y. Zhang, and Y.Z. Pei, Adv. Mater. 30, 1705617 (2018).

    Article  Google Scholar 

  10. Z.W. Chen, X.Y. Zhang, S.Q. Lin, L.D. Chen, and Y.Z. Pei, Natl. Sci. Rev. 5, 110 (2018).

    Google Scholar 

  11. Y.Z. Pei, X.Y. Shi, A. Lalonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  CAS  Google Scholar 

  12. W.C. Yang, H.C. Zhang, J.Q. Tao, D.D. Zhang, D.W. Zhang, Z.H. Wang, and G.D. Tang, Ceram. Int. 42, 9744 (2016).

    Article  CAS  Google Scholar 

  13. W.Y. Zhao, Z.Y. Liu, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, and Y.Z. Pei, Nat. Nanotech. 12, 55 (2016).

    Article  Google Scholar 

  14. W.Y. Zhao, Z.Y. Liu, Z.G. Sun, Q.J. Zhang, P. Wei, X. Mu, H.Y. Zhou, C.C. Li, S.F. Ma, D.Q. He, P.X. Ji, W.T. Zhu, X.L. Nie, X.L. Su, X.F. Tang, B.G. Shen, X.L. Dong, J.H. Yang, Y. Liu, and J. Shi, Nature 549, 247 (2017).

    Article  CAS  Google Scholar 

  15. T. Mori, Small 13, 1702013 (2017).

    Article  Google Scholar 

  16. A. Pakdel, Q.S. Guo, V. Nicolosi, and T. Mori, J. Mater. Chem. A 6, 21341 (2018).

    Article  CAS  Google Scholar 

  17. L.D. Zhao, S.H. Lo, J.Q. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, and V.P. Dravid, J. Am. Chem. Soc. 133, 20476 (2011).

    Article  CAS  Google Scholar 

  18. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  19. T.J. Zhu, L.P. Hu, X.B. Zhao, and J. He, Adv. Sci. 3, 1600004 (2016).

    Article  Google Scholar 

  20. W.S. Liu, Q.Y. Zhang, Y.C. Lan, C. Shuo, X. Yan, Q. Zhang, H. Wang, D.Z. Wang, G. Chen, and Z.F. Ren, Adv. Energy Mater. 1, 577 (2011).

    Article  CAS  Google Scholar 

  21. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).

    Article  CAS  Google Scholar 

  22. Y.C. Dou, X.Y. Qin, D. Li, L.L. Li, T.H. Zou, and Q.Q. Wang, J. Appl. Phys. 114, 044906 (2013).

    Article  Google Scholar 

  23. R.G. Deng, X.L. Su, S.Q. Hao, Z. Zheng, M. Zhang, H.Y. Xie, W. Liu, Y.G. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, and X.F. Tang, Energy Environ. Sci. 11, 1520 (2018).

    Article  CAS  Google Scholar 

  24. T. Zhang, J. Jiang, Y.K. Xiao, Y.B. Zhai, S.H. Yang, and G.J. Xu, J. Mater. Chem. A 1, 966 (2012).

  25. Y.K. Xiao, G.X. Chen, H.M. Qin, M.L. Wu, Z.P. Xiao, J. Jiang, J.T. Xu, H.C. Jiang, and G.J. Xu, J. Mater. Chem. A 2, 8512 (2014).

    Article  CAS  Google Scholar 

  26. C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn, Energy Environ. Sci. 7, 25 (2013).

    Article  Google Scholar 

  27. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti Jr., and J. Rödel, Appl. Phys. Rev. 4, 041305 (2017).

    Article  Google Scholar 

  28. K. Koumoto, Y.F. Wang, R.Z. Zhang, A. Kosuga, and R. Funahasshi, Annu. Rev. Mater. Res. 40, 363 (2010).

    Article  CAS  Google Scholar 

  29. K. Koumoto, I. Tasaki, and R. Funahashi, Mater. Res. Bull. 31, 206 (2006).

    Article  CAS  Google Scholar 

  30. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 368, 22 (2004).

    Article  CAS  Google Scholar 

  31. T. Kolodiazhnyi, A. Petric, and M. Niewczas, Phys. Rev. B 68, 338 (2003).

    Article  Google Scholar 

  32. X.H. Yang, X.Y. Qin, J. Zhang, D. Li, H.X. Xin, and M. Liu, J. Alloys Compd. 558, 203 (2013).

    Article  CAS  Google Scholar 

  33. Y.Y. Li, X.Y. Qin, D. Li, J. Zhang, J. Zhang, C. Li, Y.F. Liu, C.J. Song, H.X. Xin, H.F. Guo, and D. Li, Appl. Phys. Lett. 108, 062104 (2016).

    Article  Google Scholar 

  34. Y.S. Wang, L.L. Huang, D. Li, J. Zhang, and X.Y. Qin, J. Alloys Compd. 758, 72 (2018).

    Article  CAS  Google Scholar 

  35. G.J. Tan, F.Y. Shi, J.W. Doak, H. Sun, L.D. Zhao, P.L. Wang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 8, 26 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11834012, 51620105014, 51572210, 51521001) and the National Key R&D Program of China (Grant No. 2018YFB0703603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanting Zhu or Wenyu Zhao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhao, W., Zhu, W. et al. Preparation and Thermoelectric Performance of BaTiO3/Bi0.5Sb1.5Te3 Composite Materials. J. Electron. Mater. 49, 2794–2801 (2020). https://doi.org/10.1007/s11664-019-07851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07851-x

Keywords

Navigation