Skip to main content
Log in

Slag-Steel Emulsification on a Modified RH Degasser

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new arrangement of RH snorkels is proposed in order to improve the slag metal interaction. According to this RHDeS design, the steel jet flowing down from the vacuum chamber discharges inside the slag layer. Physical modeling of a reactor following this concept was performed. Mixing times, circulation rates, and the mass transfer coefficient were evaluated as well as the droplet residence time. Mixing times and overall circulation are not very much affected by the modifications. However, the modification brings about a large and sustainable dispersion of slag (oil) in metal (water). The influence of this dispersion on de-S was assessed. A lumped kinetic parameter \( KA /v_{\text{w}} \) was evaluated in order to quantify the process kinetics. Kinetics can be improved by one order of magnitude. It is suggested that proper slag (amount and basicity) allied to this geometric modification could be fruitful to sulfur removal from deoxidized steel. Simulations show that sulfur removal with this RHDeS arrangement is expected to be higher than with schemes where de-S reagents are added in the vacuum chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

D i :

Droplet diameter (m)

d 32 :

Average Sauter droplet diameter (mm)

d max :

Maximum droplet size (mm)

D S :

Sulfur diffusivity in steel (m2/s)

Fr, Frm:

Froude number, modified Froude number for the nozzle

N Va :

Flow number

We*:

Modified Weber number

g :

Acceleration of gravity (m/s2)

G :

Gas flow rate (STP L/min)

K :

Apparent mass transfer coefficient or constant of the first-order kinetic equation (m/s)

Q :

Circulation rate (kg/s)

[S]0 :

Steel initial sulfur concentration (ppm)

[S]eq :

steel sulfur concentration at equilibrium (ppm)

[S]:

Steel sulfur instantaneous concentration (ppm)

(S):

Slag sulfur concentration

R :

Degree of desulfurization

v :

Volume (m3, L)

V :

Velocity (m/s)

t m :

Average droplet residence time (s)

t :

Time (s)

\( \emptyset \) :

Nozzle diameter (m)

A :

Total interfacial area slag/steel, oil/water (m2)

a :

Friction area (m2)

M L :

Slag/steel mass rate (ton/ton)

e :

Distance from the down leg end to the interface slag/steel, oil/water (m)

L S :

Slag–metal sulfur partition coefficient

E :

Specific rate of input of kinetic energy (W/ton)

C :

Instantaneous water solution thymol concentration (ppm)

C 0 :

Initial water solution thymol concentration (ppm)

C eq :

Equilibrium water solution thymol concentration (ppm)

ρ :

Density (kg/m3)

η :

Dynamic viscosity (Pa·s)

λ :

Thermodynamic parameter (–)

τ mix :

Mixing time (s)

Ω:

Slag, oil thickness (m)

ε :

Average rate of dissipation of kinetic energy of turbulence (m2/s3)

σ :

Interfacial tension (N/m)

g:

Gaseous phase

l:

Liquid phase

o:

Oil

w:

Water

References

  1. K.W. Lange: Int. Mater. Rev., 1988, vol. 33 (2), pp. 53–89.

    Article  CAS  Google Scholar 

  2. 2.S. He, G. Zhang, and Q. Wang: ISIJ Int., 2012, vol. 52, pp. 977–83.

    Article  CAS  Google Scholar 

  3. 3.F.N.H. Schrama, E.M. Beunder, B. van den Berg, Y. Yang, and R. Boom: Ironmak. Steelmak., 2017, vol. 44, pp. 333–43.

    Article  CAS  Google Scholar 

  4. 4.P.C. Pistorius and M.K.G. Vermaak: S. Afr. J. Sci., 1999, vol. 95, pp. 377–80.

    CAS  Google Scholar 

  5. 5.P. Riboud and R. Vasse: Rev. Metall. (Paris), 1985, vol. 82, pp. 801–10.

    Article  CAS  Google Scholar 

  6. 6.Ahindra Ghosh: Secondary Steelmaking: Principles and Applications, CRC Press LLC, New York, NY, 2001, pp. 181–217.

    Google Scholar 

  7. 7.J.H. Wei, S.J. Zhu, and N.W. Yu: Ironmak. Steelmak., 2000, vol. 27, pp. 129–37

    Article  CAS  Google Scholar 

  8. 8.Z. Zulhan, Y.A. Patriona, and C. Schrade: SEAISI Q. J., 2013, vol. 42 (4), pp. 32–36.

    CAS  Google Scholar 

  9. 9.H. Yang, S. Yang, J. Li, and J. Zhang: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 995–1001.

    Article  CAS  Google Scholar 

  10. 10.Julian Szekely, Göran Carlsson, and Lars Helle: Ladle Metallurgy, Springer-Verlag, New York, NY, 1989, pp. 8–22.

    Book  Google Scholar 

  11. 11.J.J.M. Peixoto, W.V. Gabriel, T.S. De Oliveira, C.A. da Silva, I.A. da Silva, and V. Seshadri: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2421–34.

    Article  Google Scholar 

  12. 12.V. Tusset, C. Marique, H. Mathy, B. Gommers, and N. Van Poeck: Ironmak. Steelmak., 2003, vol. 30, pp. 142–45.

    Article  CAS  Google Scholar 

  13. 13.D.P. Zhan, Z.H. Jiang, and W.Z. Wang: Dev. Chem. Eng. Miner. Process., 2006, vol. 14, pp. 375–84.

    Article  Google Scholar 

  14. C. Schrade, H. Nicolai, and Z. Zulhan: METEC. 2nd ESTAD, Düsseldorf, Alemanha, 2015, METEC, Düsseldorf, 2015, pp. 1–5.

  15. 15.C. Zhu, P. Chen, G. Li, X. Luo, and W. Zheng: ISIJ Int., 2016, vol. 56, pp. 1368–77.

    Article  CAS  Google Scholar 

  16. W. van der Knopp and W. Tiekink: Rev. Metall. (Paris), 1996, pp. 533–40.

  17. 18.M. Zhang, J.H. Zeng, and H. Pan: Appl. Mech. Mater., 2012, vols. 217–219, pp. 449–53.

    Google Scholar 

  18. T.C. Silva, E.F. Rodrigues, C. Soares, C.A. Silva, and I.A. Silva: Proc. 46th Seminário Internacional de Aciaria, ABM, Rio de Janeiro, 2015, pp. 194–204.

  19. 20.W.X. Dai, G.G. Cheng, G.L. Zhang, Z.D. Huo, P. Lv, Y.L. Qiu, and W.F. Zhu: Metall. Mater. Trans. B, 2020, 51B, pp. 611–27.

    Article  Google Scholar 

  20. 21.K. Yoshitomi, M. Nagase, M.A. Uddin, and Y. Kato: ISIJ Int., 2016, vol. 56, pp. 1119–23

    Article  CAS  Google Scholar 

  21. 22.Y. Kato, T. Kirihara, and T. Fujii: Kawasaki Steel Techn. Rep., 1995, vol. 32, pp. 25–32.

    Google Scholar 

  22. H. Yang, J. Li, Z. Gao, F. Song, and W. Yang: Mater. Process. Fundam., 2013, pp. 45–52.

  23. 24.Y. Miki, B.G. Thomas, A. Denissov, and Y. Shimada: Steelmaking Conf. Proc., 1997, vol. 24 (8), pp. 31–38.

    CAS  Google Scholar 

  24. M.B. Campos, J.J.M. Peixoto, C.A. da Silva, and I.A. Silva: REM, Int. Eng. J., 2020, vol. 73 (3), pp. 353–59.

  25. P.S.B. Lascosqui: Master’s Thesis, Federal University of Ouro Preto/UFOP, Ouro Preto, MG, Brazil, 2006.

  26. 27.C. Schrade, M. Huellen, and Z. Zulhan: Rev. Metall. (Paris), 2006, vol. 10, pp. 445–51.

    Article  Google Scholar 

  27. 28.H. Matsuno, Y. Kikuchi, M. Komatsu, and M. Arai: Steelmaking Conf. Proc., 1993, vol. 76, pp. 123–27.

    CAS  Google Scholar 

  28. J. Zhang, J.H. Liu, S.J. Yu, D.X. Dong, and S.Q. Li: Metals, 2018, vol. 8 (7), pp. 1–15.

    Google Scholar 

  29. G. Lee and K. Bertermann: 79th Steelmaking Conf. Proc., Pittsburgh, PA, 1996, vol. 79, pp. 61–65.

  30. W. Bading, C. Lindner, E. Julius, and H. Haubrich: 78th Steelmaking Conf. Proc., Nashville, TN, 1995, vol. 78, pp. 237–41.

  31. P.H.R.V. de Melo, J.J.M. Peixoto, G.S Galante, B.H.M. Loiola, C.A. da Silva, I. da Silva, and V. Seshadri: J. Mater. Res. Technol., 2019, vol. 8 (5), pp. 3764–71.

  32. 33.L.C. Trindade, J.J.M. Peixoto, C.A. da Silva, E.P. Baston, F.L. Naves, J.C.B. Neto, D.T. de Faria, R.C.Z. Lofrano, and A.B. França: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 578–84.

    Article  Google Scholar 

  33. 34.V. Seshadri and S. Costa: Trans. ISIJ, 1986, vol. 26, pp. 133–38.

    Article  Google Scholar 

  34. C.A. da Silva, I.A. Silva, E.M.C. Martins, V. Seshadri, C.A. Perim, and G.A. Vargas Filho: Ironmak. Steelmak., 2006, vol. 33, pp. 34–38.

  35. 36.C.A. da Silva, I.A. da Silva, E.M.C. Martins, V. Seshadri, C.A. Perim, and G.A.V. Filho: Ironmak. Steelmak., 2004, vol. 31, pp. 32–47.

    Article  Google Scholar 

  36. 37.L.F. Zhang and F. Li: JOM, 2014, vol. 66, pp. 1227–40.

    Article  CAS  Google Scholar 

  37. J.J.M. Peixoto: Doctor Thesis, Federal University of Ouro Preto/UFOP, Ouro Preto, MG, Brazil, 2019.

  38. S.G.P.T de Abreu, T.A.S. de Oliveira, J.V.G.G. Ananias, G.S. Queiroz, I.A. da Silva, C.A. da Silva, and J.J.M. Peixoto: 50th Seminário de Aciaria, Fundição e Metalurgia de Não-Ferrosos, São Paulo SP, 2019, vol. 50, pp. 638–48.

  39. 40.J.M. Chou, M.C. Chuang, M.H. Yeh, W.S. Hwang, S.H. Liu, S.T. Tsai, and H.S. Wang: Ironmak. Steelmak., 2003, vol. 30, pp. 195–202.

    Article  CAS  Google Scholar 

  40. 41.J. Lehmann and M. Nadif: Rev Mineral. Geochem., 2011, vol. 73, pp. 493–511.

    Article  CAS  Google Scholar 

  41. 42.N. El-Kaddah and J. Szekely: Ironmak. Steelmak., 1981, vol. 8, pp. 269–78

    CAS  Google Scholar 

  42. C. L. Yaws: Transport Properties of Chemicals and Hydrocarbons. Viscosity, Thermal Conductivity, and Diffusivity of C1 to C100 Organics and Ac to Zr Inorganics, William Andrew, Norwich, 2009, pp. 554–555.

  43. J.H. Wei, N.M. Yu, Y.Y. Fan, S.L. Yang, J.C. Ma, and D.P. Zhu: J. Shanghai Univ., 2002, vol. 6 (2), pp. 167–75.

  44. Nippon Slag Association, https://www.slg.jp/e/slag/process.html. Accessed 28 Oct 2020.

  45. 46.A. Al-Sarkhi, C. Sarica, and B. Qureshi: Int. J. Multiph. Flow, 2012, vol. 39, pp. 21–28.

    Article  CAS  Google Scholar 

  46. H. Gaye, P.V. Riboud, and J. Welfringer: Proc. PTD, 5th Int. Iron & Steel Cong., Washington DC, 1986, vol. 6, pp. 631–639.

  47. S. Asai, M. Kawachi, and I. Muchi: Scaninject III: 3rd Int. Conf. on Refining of Iron and Steel by Powder Injection, Proc. Part 2, Luleå, Sweden, 1983.

Download references

Acknowledgments

The authors acknowledge the help provided by UFOP, IFMG, CNPq, CAPES, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marlon Barros Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 6, 2020; accepted March 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.M.B., Oliveira, M.A., Peixoto, J.J.M. et al. Slag-Steel Emulsification on a Modified RH Degasser. Metall Mater Trans B 52, 2111–2126 (2021). https://doi.org/10.1007/s11663-021-02161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02161-2

Navigation