Skip to main content
Log in

Experimental Investigation of the Flow in a Continuous-Casting Mold under the Influence of a Transverse, Direct Current Magnetic Field

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article describes laboratory experiments aimed at investigations of flow structures and related transport processes in the continuous-casting mold under the influence of an external direct current (DC) magnetic field. The main value of cold metal laboratory experiments consists in the capabilities to obtain quantitative flow measurements with a reasonable spatial and temporal resolution. The experimental results presented here were obtained using a physical model operating with the room-temperature alloy GaInSn. According to the concept of the electromagnetic brake, the impact of a DC magnetic field on the outlet flow from the submerged entry nozzle (SEN) has been studied up to Hartmann numbers of approximately 400. The effect of the magnetic field on the flow structure turned out to be complex. The flow measurements do not manifest a general braking effect, which would be expected as an overall damping of the flow velocity and the related fluctuations all over the mold volume. Variations of the wall conductivity showed a striking impact on the resulting flow structures. The experiments provide a substantial database for the validation of respective numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Okazawa, T. Toh, J. Fukuda, T. Kawase, and M. Toki: ISIJ Int., 2001, vol. 41, pp. 851–58.

    Article  CAS  Google Scholar 

  2. S. Kunstreich: Int. Rev. Met., 2003, no. 4, pp. 395–408, and no. 11, pp. 1043–61.

  3. S. Takeuchi, J. Kubota, Y. Miki, H. Okuda, and A. Shirayama: 4 th Int. Conf. on Electromagnetic Processing of Materials, Lyon, France, 2003, pp. 145–50.

  4. T. Toh, E. Takeuchi, and T. Matsumiya: 5 th Int. Conf. on Electromagnetic Processing of Materials, Sendai, Japan, 2006, pp. 21–25.

  5. J. Nagal, S. Kojima, K.I. Suzuki, and S. Kollberg: Iron Steel Eng., 1984, vol. 61, pp. 41–47.

    Google Scholar 

  6. D. Bal, J. Brockhoff, W. Damen, and T. Peeters: 5 th Int. Conf. on Electromagnetic Processing of Materials, Sendai, Japan, 2006, pp. 108–13.

  7. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94–107.

    Article  CAS  Google Scholar 

  8. D.S. Kim, W.S. Kim, and K.H. Cho: ISIJ Int., 2000, vol. 40, pp. 670–76.

    Article  CAS  Google Scholar 

  9. B. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1491–503.

    Article  CAS  Google Scholar 

  10. K. Takatani, K. Nakai, N. Kasai, T. Watanabe, and H. Nakajima: ISIJ Int., 1989, vol. 29. pp. 1063–68.

    Article  Google Scholar 

  11. X. Tian, B. Li, and J. He: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 596–604.

    Article  CAS  Google Scholar 

  12. A. Idogawa, M. Suguzawa, S. Takeuchi, K. Sorimachi, and T. Fujii: Mater. Sci. Eng. A, 1993, vol. 173, pp. 293–97.

    Article  Google Scholar 

  13. P. Gardin, J.-M. Galpin, M.-C. Regnier, and J.-P. Radot: Magnetohydrodynamics, 1996, vol. 32, pp. 189–95.

    Google Scholar 

  14. M. Zeze, H. Harada, E. Takeuchi, and T. Ishii: 76th Steelmaking Conf., Dallas, TX, 1993, pp. 267–72.

    Google Scholar 

  15. H. Harada, T. Toh, T. Ishii, K. Kaneko, and E. Takeuchi: ISIJ Int., 2001, vol. 41, pp. 1236–44.

    Article  CAS  Google Scholar 

  16. J. Etay and Y. Delannoy: 5 th Int. PAMIR Conf. on Fundamental and Applied MHD, vol. 2, Ramatuelle, France, 2002, pp. 177–82.

    Google Scholar 

  17. Y. Takeda: Nucl. Eng. Des., 1991, vol. 126, pp. 277–84.

    Article  Google Scholar 

  18. S. Eckert, A. Cramer, and G. Gerbeth: Magnetohydrodynamics—Historical Evolution and Trends, Eds. S. Molokov, R. Moreau, and H.K. Moffatt, Springer, New York, NY, 2007, pp. 275–94.

    Google Scholar 

  19. K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, and T. Wondrak: ISIJ Int., 2010, vol. 50, pp. 1134–41.

    Article  CAS  Google Scholar 

  20. R.H. Bogaard, P.D. Desai, H.H. Li, and C.Y. Ho: Thermochim. Acta, 1993, vol. 218, pp. 373–93.

    Article  CAS  Google Scholar 

  21. Signal Processing: http://www.signal-processing.com.

  22. C. Zhang, S. Eckert, and G. Gerbeth: J. Fluid Mech., 2007, vol. 575, pp. 57–82.

    Article  Google Scholar 

  23. C. Zhang, S. Eckert, and G. Gerbeth: ISIJ Int., 2007, vol. 47, pp. 795–801.

    Article  CAS  Google Scholar 

  24. P.A. Davidson: J. Fluid Mech., vol. 299, pp. 153–86.

Download references

Acknowledgments

The research is supported by the Deutsche Forschungsgemeinschaft (DFG) in form of the SFB 609 “Electromagnetic Flow Control in Metallurgy, Crystal Growth and Electrochemistry.” This support is acknowledged gratefully by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Eckert.

Additional information

Manuscript submitted March 2, 2010.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 9,419 kb)

Supplementary material 2 (GIF 11,341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmel, K., Eckert, S. & Gerbeth, G. Experimental Investigation of the Flow in a Continuous-Casting Mold under the Influence of a Transverse, Direct Current Magnetic Field. Metall Mater Trans B 42, 68–80 (2011). https://doi.org/10.1007/s11663-010-9458-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9458-1

Keywords

Navigation