Skip to main content
Log in

Inductively Coupled Plasma Process for Reconditioning Ti and Ni Alloy Powders for Additive Manufacturing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In laser powder bed fusion additive manufacturing (AM), the number of build cycles required for a powder to go from its virgin state to a state that can alter final part mechanical properties is currently unknown. While ideal, the use of virgin powder for every AM build is not practical or economical. It is critical to investigate new methods that will help mitigate these cost drivers and enable the use of recycled powder in AM. Presented here is initial work on the use of an inductively coupled plasma (ICP) process to recondition AM powders used in laser and electron beam powder bed fusion, highlighting some challenges faced while developing optimum process parameters. The manuscript focuses on the three-dimensional characterization of used powder, before and after the plasma reconditioning process, in order to quantitatively understand the result of the ICP process on the shape and porosity of the particles. A distinct change in the morphology of the powder was observed before and after the ICP where most, but not all, irregular shaped powder particles and multi-particles were converted into more spherical particles. A detailed analysis of the percentage of spherical and non-spherical particles before and after the ICP process is also included, as well as the process’ effect on particle porosity, which was different for the two powders used, Inconel 718 and Ti-6Al-4V. The results indicate the value of using the ICP process as a viable option for recycling of these two powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Certain commercial equipment, software, and/or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment and/or materials used are necessarily the best available for the purpose.

References

  1. RP Guo, L Xu, BYP Zong, R Yang, Metallurgica Sinica (English Letters), 2017, vol. 30(8), pp. 735 – 744.

    Article  CAS  Google Scholar 

  2. C Oikonomou, E Hryha, A Ahlin, L Nyborg, European Powder Metallurgy Association, 2013, pp. 1–7.

    Google Scholar 

  3. A.T. Sutton, C.S. Kriewall, M.C. Leu, and J.W. Newkirk: in Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, 2016, pp. 1:1004–1030.

  4. D.J. Novotnak, and L.W. L’Herbier: European Powder Metallurgy Association, 2015, pp. 1–7.

  5. R. O’Leary, R. Setchi, P. Prickett, G. Hankins, and N. Jones: KES Transactions on Sustainable Design and Manufacturing II, 2015, paper sdm15-038, pp. 377–88.

  6. I. Rosenthal, E. Tiferet, M. Ganor, and A. Stern: The Annals of “Dunarea de Jos” University of Galati. Fascicle XII: Welding Equipment and Technology, 2014, vol. 25, pp. 35–40.

  7. P Harlin, M Olsson, Powder Metallurgy, 2007, vol. 50(4), pp. 345–353.

    Article  CAS  Google Scholar 

  8. P. Carroll, A. Pinkerton, J. Allen, W. Syed, H. Sezer, P. Brown, G. Ng, and L. Li: in Proceedings of AVT-139 Specialists Meeting on Cost Effective Manufacture via Net Shape Processing, NATO Research and Technology Organisation, 2006.

  9. M Hu, T Zhang, J Stansbury, J Neal, EJ Garboczi, J. Environ. Eng., 2013, vol. 139, pp. 923–931.

    Article  CAS  Google Scholar 

  10. ST Erdogan, AM Forster, PE Stutzman, EJ Garboczi, Cem. Conc. Comp., 2017, vol. 83, pp. 36-44.

    Article  CAS  Google Scholar 

  11. EJ Garboczi EJ, Powder Technology, 2011, vol. 207, pp. 96-103.

    Article  Google Scholar 

  12. R Pashminehazar, A Kharaghani, E Tsotsas, Powder Technology, 2016, vol. 300, pp. 46-60.

    Article  CAS  Google Scholar 

  13. AS Chawanji, AJ Baldwin, G Brisson, E Webster, J. Microscopy, 2012, vol. 248, pp. 49–57. https://doi.org/10.1111/j.1365-2818.2012.03649.x.

    Article  CAS  Google Scholar 

  14. C Redenbach, R Ohser-Wiedemann, R Löffler, T Bernthaler, A Nagel, Part. Part. Syst. Charact., 2011, vol. 28, pp. 3–12. https://doi.org/10.1002/ppsc.200900088.

    Article  Google Scholar 

  15. G Chen, Q Zhou, SY Zhao, JO Yin, P Tan, ZF Li, Y Ge, J Wang, HP Tang, Powder Technology, 2018, vol. 330, pp. 425-530.

    Article  CAS  Google Scholar 

  16. G Chen, SY Zhao, P Tan, J Wang, CS Xiang, HP Tang, Powder Technology, 2018, vol. 333, pp. 38-46.

    Article  CAS  Google Scholar 

  17. A du Plessis, P Sperling, A Beerlink, WB du Preez, SG le Roux, MethodsX, 2018, vol. 5, pp. 1336-1345.

    Article  Google Scholar 

  18. K Heim, F Bernier, R Pelletier, L-P Lefebvre, Case Studies in Nondestructive Testing and Evaluation, 2016, vol. 6, pp. 45-52.

    Article  Google Scholar 

  19. S Cottrino, Y Jorand, E Maire, J Adrien, Materials Characterization, 2013, vol. 81, pp. 111-123.

    Article  CAS  Google Scholar 

  20. F. Bernier, R. Tahara, and M. Gendron: Metal Powder Report, 2018, vol. 73, May/June.

  21. C. Sungail, and A. Abid: Metal Powder Report, 2018, vol. 73, November/December.

  22. EJ Garboczi, Cem. Conc. Res., 2002, vol. 32(10), pp. 1621 – 1638.

    Article  CAS  Google Scholar 

  23. JA Slotwinski, EJ Garboczi, PE Stutzman, CF Ferraris, S Watson, MA Peltz, J. Res. NIST, 2014, vol. 119, pp. 460-493.

    Article  CAS  Google Scholar 

  24. EJ Garboczi, JW Bullard, Adv. Pow. Tech., 2017, vol. 28, pp.325 – 339.

    Article  CAS  Google Scholar 

  25. M Renderos, F Girot, A Lamikiz, A Torregaray, N Saintier, Physics Procedia, 2016, vol. 83, pp. 769 – 777. https://doi.org/10.1016/j.phpro.2016.08.079.

    Article  CAS  Google Scholar 

  26. QB Nguyen, M Ling, S Nai, Z Zhu, C-N Sun, J Wei, W Zhou, Engineering, 2017, vol. 3, pp. 695–700.

    Article  CAS  Google Scholar 

  27. M Renderos, A Torregaray, ME Gutierrez-Orrantia, A Lamikiz, N Saintier, F Girot, Materials Characterization, 2017, vol. 134, pp. 103-113.

    Article  CAS  Google Scholar 

  28. G. Egger, P.E. Gygax, R. Glardon, and N.P. Karapatis: in: Solid Freeform Fab. Proc., August 1999, pp. 255–63.

  29. HP Tang, M Qian, N Liu, XZ Zhang, GY Yang, J Wang, JOM, 2015, vol. 67(3), pp. 555–563.

    Article  CAS  Google Scholar 

  30. MI Boulos, Plasma Chemistry and Plasma Processing, 2016, vol. 36(1), pp. 3–28.

    Article  CAS  Google Scholar 

  31. X Fan, F Gitzhofer, M Boulos, Journal of Thermal Spray Technology, 1998, vol. 7(2), pp. 247–253.

    Article  CAS  Google Scholar 

  32. C. Yu, X. Zhou, D. Wang, N.V. Linh, and W. Liu, Plasma Sci. Technol., 2018, vol. 20(1), pp. 014019.

  33. W Yuming, H Junjie, S Yanwei, Rare Metal Mater. and Engin., 2013, vol. 42(9), pp. 1810 – 1813.

    Article  Google Scholar 

  34. N Otsu, IEEE Transactions on Systems, Man, and Cybernetics, 1979, vol. 9(1), pp. 62–66.

    Article  Google Scholar 

  35. N Hrabe, EJ Garboczi, Additive Manufacturing, 2020, vol. 31, pp. 100965.

    Google Scholar 

  36. EJ Garboczi, N Hrabe, J. Vis. Exp., 2020, vol. 166, pp. e61636. https://doi.org/10.3791/61636.

    Article  CAS  Google Scholar 

  37. M Taylor, EJ Garboczi, ST Erdogan, DW Fowler, Powder Technology, 2006, vol. 162(1), pp. 1 – 15.

    Article  CAS  Google Scholar 

  38. L. Ardila, F. Garciandia, J. Gonzlez-Daz, P. lvarez, A. Echeverria, M. Petite, R. Deffley, J. Ochoa: Phys. Proc., 2014, vol. 56, pp. 99–107.

  39. JM Fernlund, Engineering Geology, 1998, vol. 50(1), pp. 111 – 124.

    Article  Google Scholar 

  40. EJ Garboczi, K Riding, M Mirzahosseini, Advanced Powder Technology, 2017, vol. 28(2), pp. 648 – 657.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Garboczi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 31, 2020; accepted February 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garboczi, E.J., Brooks, A.J., Kerwin, L. et al. Inductively Coupled Plasma Process for Reconditioning Ti and Ni Alloy Powders for Additive Manufacturing. Metall Mater Trans A 52, 1869–1882 (2021). https://doi.org/10.1007/s11661-021-06198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06198-5

Navigation