Skip to main content
Log in

Heat Transfer and Materials Flow Modeling of FSW for CuCrZr Alloy Using Experimentally Determined Thermo-Physical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A three-dimensional heat transfer and material flow-based model using experimentally measured thermo-physical properties has been developed for friction stir welding (FSW) of Cu-0.8Cr-0.1Zr alloy. CuCrZr alloy is a precipitation-hardened copper alloy with good electrical and thermal conductivity and moderate strength at elevated temperatures. The temperature-dependent specific heat, thermal conductivity, and yield strength of the alloy were determined experimentally to develop a reliable and accurate numerical model. The results from numerical model were validated by performing suitable experiments for numerous tool rotational speeds and welding speeds during joining of 3-mm-thick CuCrZr alloy on a dedicated FSW machine. The temperature evolution across the welds was measured using thermocouples. The results from the developed numerical model were validated by comparing it with the measured weld thermal cycles, peak temperatures, and thermo-mechanically-affected zone (TMAZ) for various welds. Validation was also supported with microstructural evidences from the weld nugget zone and TMAZ. The developed model showed the capability to simulate FSW of CuCrZr alloy and predict the important results with reasonably good accuracy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. 1 J.W. Davis and G.M. Kalinin: J. Nucl. Mater., 1998, vol. 258–263, pp. 323–8.

    Article  Google Scholar 

  2. 2 M. Lipa, A. Durocher, R. Tivey, T. Huber, B. Schedler, and J. Weigert: Fusion Eng. Des., 2005, vol. 75–79, pp. 469–73.

    Article  Google Scholar 

  3. G. Kalinin, and R. Matera: J. Nucl. Mater., 1998, vol. 258–263, pp. 345–350

    Article  Google Scholar 

  4. W.-B. Lee and S.-B. Jung: Mater. Lett., 2004, vol. 58, pp. 1041–6.

    Article  CAS  Google Scholar 

  5. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R Reports, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  6. J. Teimurnezhad, H. Pashazadeh, and A. Masumi: J. Manuf. Process., 2016, vol. 22, pp. 254–9.

    Article  Google Scholar 

  7. Y. Morisada, T. Imaizumi, H. Fujii, M. Matsushita, and R. Ikeda: J. Mater. Eng. Perform., 2014, vol. 23, pp. 4143–7.

    Article  CAS  Google Scholar 

  8. A.K. Singh, P. Sahlot, M. Paliwal, and A. Arora: Int. J. Adv. Manuf. Technol., 2019, vol. 105, pp. 771–83.

    Article  Google Scholar 

  9. L. Fourment and S. Guerdoux: Int. J. Mater. Form., 2008, vol. 1, pp. 1287–90.

    Article  Google Scholar 

  10. Y. Xiao, H. Zhan, Y. Gu, and Q. Li: Int. J. Heat Mass Transf., 2017, vol. 104, pp. 288–300.

    Article  CAS  Google Scholar 

  11. H. Atharifar, D. Lin, and R. Kovacevic: J. Mater. Eng. Perform., 2009, vol. 18, pp. 339–50.

    Article  CAS  Google Scholar 

  12. R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy: Acta Mater., 2007, vol. 55, pp. 883–95.

    Article  CAS  Google Scholar 

  13. Z. Zhang and H.W. Zhang: Int. J. Adv. Manuf. Technol., 2008, vol. 37, pp. 279–93.

    Article  Google Scholar 

  14. W.-X. Pan, D.-S. Li, A.M. Tartakovsky, S. Ahzi, M. Khraisheh, and M. Khaleel: Int. J. Plast., 2013, vol. 48, pp. 189–204.

    Article  CAS  Google Scholar 

  15. X.K. Zhu and Y.J. Chao: J. Mater. Process. Technol., 2004, vol. 146, pp. 263–72.

    Article  CAS  Google Scholar 

  16. A. Arora, Z. Zhang, A. De, and T. DebRoy: Scr. Mater., 2009, vol. 61, pp. 863–6.

    Article  CAS  Google Scholar 

  17. Z. Zhang and H.W. Zhang: Int. J. Adv. Manuf. Technol., 2014, vol. 72, pp. 1647–53.

    Article  Google Scholar 

  18. W. Li, Z. Zhang, J. Li, and Y.J. Chao: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1849–56.

    Article  CAS  Google Scholar 

  19. Z. Zhang, W. Li, J. Li, and Y.J. Chao: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2446–50.

    Article  CAS  Google Scholar 

  20. R. Nandan, T. Debroy, and H. Bhadeshia: Prog. Mater. Sci., 2008, vol. 53, pp. 980–1023.

    Article  CAS  Google Scholar 

  21. A. Arora, R. Nandan, A.P. Reynolds, and T. DebRoy: Scr. Mater., 2009, vol. 60, pp. 13–6.

    Article  CAS  Google Scholar 

  22. A. Arora, A. De, and T. Debroy: Scr. Mater., 2011, vol. 64, pp. 9–12.

    Article  CAS  Google Scholar 

  23. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 526–37.

    Article  Google Scholar 

  24. P.A. Colegrove and H.R. Shercliff: J. Mater. Process. Technol., 2005, vol. 169, pp. 320–7.

    Article  CAS  Google Scholar 

  25. O. Zienkiewicz and I. Cormeau: Int. J. Numer. Methods Eng., 1974, vol. 8, pp. 821–45.

    Article  Google Scholar 

  26. Z. Ding, S. Jia, P. Zhao, M. Deng, and K. Song: Mater. Sci. Eng. A, 2013, vol. 570, pp. 87–91.

    Article  CAS  Google Scholar 

  27. A. Arora, T. DebRoy, and H.K.D.H. Bhadeshia: Acta Mater., 2011, vol. 59, pp. 2020–8.

    Article  CAS  Google Scholar 

  28. M. Song and R. Kovacevic: Int. J. Mach. Tools Manuf., 2003, vol. 43, pp. 605–15.

    Article  Google Scholar 

  29. M. Mehta, A. Arora, A. De, and T. DebRoy: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2716–22.

    Article  CAS  Google Scholar 

  30. C.R. Xavier, H.G.D. Junior, and J.A. de Castro: Mater. Res., 2015, vol. 18, pp. 489–502.

    Article  CAS  Google Scholar 

  31. K. Jha, S. Kumar, K. Nachiket, K. Bhanumurthy, and G.K. Dey: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, vol. 49, pp. 223–34.

  32. S. Cartigueyen and K. Mahadevan: J. Manuf. Process., 2015, vol. 18, pp. 124–30.

    Article  Google Scholar 

  33. R. Lai, X. Li, D. He, J. Lin, J. Li, and Q. Lei: J. Nucl. Mater., 2018, vol. 510, pp. 70–79.

    Article  CAS  Google Scholar 

  34. S. Palanivel, A. Arora, K.J. Doherty, and R.S. Mishra: Mater. Sci. Eng. A, 2016, vol. 678, pp. 308–14.

    Article  CAS  Google Scholar 

  35. R. Sharma, A.K. Singh, A. Arora, S. Pati, and P.S. De: Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 1383–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Shri U D Malshe, Engineering Design & Development Division, for showing a keen interest in the work. The authors are also thankful to Dr. G K Mallik of Post Irradiation Examination Division, Dr. S. Bhattacharya of Technical Physics Division, and Shri R K Mittal of Engineering Design & Development Division for providing support during the work. The authors would like to acknowledge the financial support provided by the Department of Atomic Energy, India, for project sanction no. 57/14/05/2019-BRNS. This work would not be possible without this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal Jha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 23, 2020; accepted November 9, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, K., Sahlot, P., Singh, A.K. et al. Heat Transfer and Materials Flow Modeling of FSW for CuCrZr Alloy Using Experimentally Determined Thermo-Physical Properties. Metall Mater Trans A 52, 680–690 (2021). https://doi.org/10.1007/s11661-020-06107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06107-2

Navigation