Skip to main content
Log in

Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys

  • Symposium: New Steels for Applications under Extreme Conditions
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The standard powder metallurgy (PM) route for the fabrication of oxide-dispersion-strengthened (ODS) steels involves gas atomization to produce a prealloyed powder, mechanical alloying (MA) with fine oxide powders, consolidation, and finally thermal/thermomechanical treatment (TMT). It is well established that ODS steels with superior property combinations, for example, creep and tensile strength, can be produced by this PM/MA route. However, the fabrication process is complex and expensive, and the fitness for scaling up to the industrial scale is limited. At the laboratory scale, production of small amounts of well-controlled model systems continues to be desirable for specific purposes, such as modeling-oriented experiments. Thus, from the laboratory to industrial application, there is growing interest in complementary or alternative fabrication routes for ODS steels and related model systems, which offer a different balance of cost, convenience, properties, and scalability. This article reviews the state of the art in ODS alloy fabrication and identifies promising new routes toward ODS steels. The PM/AM route for the fabrication of ODS steels is also described, as it is the current default process. Hybrid routes that comprise aspects of both the PM route and more radical liquid metal (LM) routes are suggested to be promising approaches for larger volumes and higher throughput of fabricated material. Although similar uniformity and refinement of the critical nanometer-sized oxide particles has not yet been demonstrated, ongoing innovations in the LM route are described, along with recent encouraging preliminary results for both extrinsic nano-oxide additions and intrinsic nano-oxide formation in variants of the LM route. Finally, physicochemical methods such as ion beam synthesis are shown to offer interesting perspectives for the fabrication of model systems. As well as literature sources, examples of progress in the authors’ groups are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.-J. Huet: Powder Metall., 1967, vol. 10, pp. 208–15.

    Article  Google Scholar 

  2. F.G. Wilson, B.R. Knott, and C.D. Desforges: Metall. Trans. A, 1978, vol. 9A, pp. 275–82.

    Article  Google Scholar 

  3. A. De Bremaecker: J. Nucl. Mater., 2012, vol. 428, pp. 13–30.

    Article  Google Scholar 

  4. J.J. Fischer: US Patent Number 4,075,010, The International Nickel Company, Inc., New York, NY, 1978.

  5. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vol. 307–311, pp. 749–57.

    Article  Google Scholar 

  6. M.J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392–406.

    Article  Google Scholar 

  7. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.

    Article  Google Scholar 

  8. S.J. Zinkle: Phys. Plasmas, 2005, vol. 12, Art.-ID 058101.

  9. C.S. Wukusick and J.F. Collins: Mater. Res. Stand., 1964, vol. 4, pp. 637–46.

    Google Scholar 

  10. J.S. Benjamin: Metall. Trans., 1970, vol. 1, pp. 2943–51.

    Google Scholar 

  11. Talks available at: http://www.netl.doe.gov/events/conference-proceedings/2010/ods.

  12. N. Baluc et al.: J. Nucl. Mater., 2011, vol. 417, pp. 149–53.

    Article  Google Scholar 

  13. R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, and M. Klimenkov: J. Nucl. Mater., 2002, vol. 307–311, pp. 769–72.

    Article  Google Scholar 

  14. P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat: J. Nucl. Mater., 2012, vol. 428, pp. 6–12.

    Article  Google Scholar 

  15. J. Hoffmann, M. Rieth, R. Lindau, M. Klimenkov, A. Möslang, and H.R.Z. Sandim: J. Nucl. Mater., 2013, vol. 442, pp. 444–48.

    Article  Google Scholar 

  16. A. Allimant, M.P. Planche, Y. Bailly, L. Dembinski, and C. Coddet: Powder Technology, 2009, vol. 190, pp. 79–83.

    Article  Google Scholar 

  17. C. Si, X. Zhang, J. Wang, and Y. Li: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 627–35.

    Article  Google Scholar 

  18. M. Stobik, Nanoval atomizing—capabilities, applications and related processes, in: Symposium Spray Forming 2002, Proceedings, Eds. V. Uhlenwinkel, J. Ziesenis, K Bauckhage, Vol. 6, pp. 65–79, University Bremen, 2003.

  19. H. Zoz: Mater. Sci. Forum, 1995, vols. 179–181, pp. 419–24.

    Article  Google Scholar 

  20. I. Hilger, M. Tegel, M.J. Gorley, P.S. Grant, T. Weißgärber, and B. Kieback: J. Nucl. Mater., 2014, vol. 447, pp. 242–47.

    Article  Google Scholar 

  21. T. Grosdidier, G. Ji, and S. Launois: Scri. Mater., 2007, vol. 57, pp. 525–28.

    Article  Google Scholar 

  22. B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277–86.

    Article  Google Scholar 

  23. P. Franke, C. Heintze, F. Bergner, and T. Weissgärber: Materials Testing, 2010, vol. 52, pp. 133–38.

    Article  Google Scholar 

  24. C. Heintze, M. Hernandez-Mayoral, A. Ulbricht, F. Bergner, A. Shariq, T. Weissgärber, and H. Frielinghaus: J. Nucl. Mater., 2012, vol. 428, pp. 139–46.

    Article  Google Scholar 

  25. K. Rajan, T. Shanmugasundaram, V.S. Sarma, and B.S. Murty: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4037–41.

    Article  Google Scholar 

  26. Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, and C.S. Liu: J. Nucl. Mater., 2012, vol. 424, pp. 279–84.

    Article  Google Scholar 

  27. M.A. Auger, V. de Castro, T. Leguey, A. Muñoz, and R. Pareja: J. Nucl. Mater., 2013, vol. 436, pp. 68–75.

    Article  Google Scholar 

  28. X. Boulnat, D. Fabregue, M. Perez, M.-H. Mathon, and Y. de Carlan: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2461–65.

    Article  Google Scholar 

  29. M. Hernández-Mayoral et al.: Mater. Sci. Technol., 2014, vol. 30, pp. 1669–75.

    Article  Google Scholar 

  30. H. Zhang et al.: J. Nucl. Mater., 2015, vol. 464, pp. 61–68.

    Article  Google Scholar 

  31. K.N. Allahar, J. Burns, B. Jaques, Y.Q. Wu, I. Charit, J. Cole, and D.P. Butt: J. Nucl. Mater., 2013, vol. 443, pp. 256–65.

    Article  Google Scholar 

  32. X. Boulnat, D. Fabregue, M. Perez, S. Urvoy, D. Hamon, and Y. de Carlan: Powder Metall., 2014, vol. 57, pp. 204–11.

    Article  Google Scholar 

  33. I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht: J. Nucl. Mater., 2016, vol. 472, pp. 206–14.

    Article  Google Scholar 

  34. X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.-H. Mathon, and Y. De Carlan: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1485–97.

    Article  Google Scholar 

  35. I. Hilger, F. Bergner, and T. Weißgärber: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3576–81.

    Article  Google Scholar 

  36. N. Sallez, X. Boulnat, A. Borbely, J.L. Bechade, D. Fabregue, M. perez, Y. De Carlan, L. Hennet, C. Mocuta, D. Thiaudiere, and Y. Brechet: Acta Mater., 2015, vol. 87, pp. 377–89.

    Article  Google Scholar 

  37. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.

    Article  Google Scholar 

  38. J. Gil Sevillano and J. Aldazabal: Scri. Mater., 2004, vol. 51, pp. 795–800.

    Article  Google Scholar 

  39. Z. Dapeng, L. Yong, L. Feng, W. Yuren, Z. Liujie, and D. Yuhai: Mater. Lett., 2011, vol. 65, pp. 1672–74.

    Article  Google Scholar 

  40. A. Garcia-Junceda, N. Garcia-Rodriguez, M. Campos, M. Carton-Cordero, and J.M. Torralba: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3582–87.

    Article  Google Scholar 

  41. Z. Yao, W. Xiong, B. Huang, Q. Yang, and J. Jianjun: J. Nucl. Mater., 2015, vol. 461, pp. 95–99.

    Article  Google Scholar 

  42. M.S. Yurlova, V.D. Demenyuk, L.Yu. Lebedeva, D.V. Dudina, E.G. Grigoryev, and E.A. Olevsky: J. Mater. Sci., 2014, vol. 49, pp. 952–85.

    Article  Google Scholar 

  43. I. Bogachev, A. Yudin, E. Grigoryev, I. Chernov, M. Staltsov, O. Khasanov, and E. Olevsky: Materials, 2015, vol. 8, pp. 7342–53.

    Article  Google Scholar 

  44. D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: J. Nucl. Mater., 2013, vol. 442, pp. S112–S118.

    Article  Google Scholar 

  45. D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4730–39.

    Article  Google Scholar 

  46. Z. Oksiuta, P. Hosemann, S.C. Vogel, and N. Baluc: J. Nucl. Mater., 2014, vol. 451, pp. 320–27.

    Article  Google Scholar 

  47. Z. Oksiuta, M. Lewandowska, K. Kurzydlowski, and N. Baluc: Phys. Status Solidi A, 2010, vol. 207, pp. 1128–131.

    Article  Google Scholar 

  48. M. Song, C. Sun, J. Jang, C.H. Han, T.K. Kim, K.T. Hartwig, and X. Zhang: J. Alloys Compounds, 2013, vol. 577, pp. 247–56.

    Article  Google Scholar 

  49. G.R. Odette, M.J. Alinger, and B.D.Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.

    Article  Google Scholar 

  50. K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens: J. Nucl. Mater., 2009, vol. 385, pp. 308–11.

    Article  Google Scholar 

  51. K. Verhiest, S. Mullens, N. De Wispelaere, S. Claessens, A. De Bremaecker, K. Verbeken, and Y. Houbaert: Ceram. Intl., 2012, vol. 38, pp. 2701–709.

    Article  Google Scholar 

  52. K. Verhiest, S. Mullens, J. Paul, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: Ceram. Intl., 2014, vol. 40, pp. 2187–200.

    Article  Google Scholar 

  53. K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: Ceram. Intl., 2014, vol. 40, pp. 14319–334.

    Article  Google Scholar 

  54. Z. Shi and F. Han: Mater. Des., 2015, vol. 66, pp. 304–308.

    Article  Google Scholar 

  55. I. Grants, D. Räbiger, T. Vogt, S. Eckert, and G. Gerbeth: Magnetohydrodynamics, 2015, vol. 51, pp. 419–24.

    Google Scholar 

  56. X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.

    Article  Google Scholar 

  57. X. Li, Y. Yang, and D. Weiss: Metall. Sci. Technol., 2008, vol. 26-2, pp. 12–20.

    Article  Google Scholar 

  58. I. Grants, G. Gerbeth, and A. Bojarevics: J. Appl. Phys., 2015, vol. 117, Art. ID 204901.

  59. Y. Liu, J. Fang, D. Liu, Z. Lu, F. Liu, S. Chen, and C.T. Liu: J. Nucl. Mater., 2010, vol. 396, pp. 86–93.

    Article  Google Scholar 

  60. J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.

    Article  Google Scholar 

  61. T.L. Lee, J. Mi, S.L. Zhao, J.F. Fan, S.Y. Zhang, S. Kabrac, and P.S. Grant: Scri. Mater., 2015, vol. 100, pp. 82–85.

    Article  Google Scholar 

  62. M.S. Nagorka, C.G. Levi, and G.E. Lucas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 859–71.

    Article  Google Scholar 

  63. M.S. Nagorka, C.G. Levi, and G.E. Lucas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–81.

    Article  Google Scholar 

  64. A.N. Velikodnyi et al.: Probl. Atom. Sci. Technol., 2014, vol. 92, pp. 94–102.

    Google Scholar 

  65. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, Art. ID 041101.

  66. J.C. Walker, K.M. Berggreen, A.R. Jones, and C.J. Sutcliffe: Adv. Eng. Mater., 2009, vol. 11, pp. 541–46.

    Article  Google Scholar 

  67. T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, and G.J. Tatlock, Acta Mater., 2015, vol. 87, pp. 201–215.

    Article  Google Scholar 

  68. H.J. Chang, H.Y. Cho, and J.H. Kim: J. Alloys Comp., 2015, vol. 653, pp. 528–33.

    Article  Google Scholar 

  69. R.M. Hunt, K.J. Kramer, and B. El-Dasher: J. Nucl. Mater., 2015, vol. 464, pp. 80–85.

    Article  Google Scholar 

  70. S.J. Zinkle: Fusion Sci. Technol., 2013, vol. 64, pp. 65–75.

    Article  Google Scholar 

  71. K. Verhiest, S. Mullens, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken: J. Nucl. Mater., 2012, vol. 428(2012), pp. 54–64.

    Article  Google Scholar 

  72. D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L.E. Rehn and E. Wakai: J. Nucl. Mater., 2004, vol. 329–333, pp. 392–96.

    Article  Google Scholar 

  73. C. Zheng, A. Gentils, J. Ribis, O. Kaïtasova, and V.A. Borodin: Phil. Mag., 2014, vol. 94, pp. 2937–55.

    Article  Google Scholar 

  74. C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, and F. Jomard: J. Nucl. Mater., 2014, vol. 455, pp. 398–401.

    Article  Google Scholar 

  75. T. Stan, Y. Wu, G.R. Odette, K.E. Sickafus, H.A. Dabkowska, and B.D. Gaulin: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4505–512.

    Article  Google Scholar 

  76. T.C. Kaspar, M.E. Bowden, C.M. Wanf, V. Shutthanadan, N.R. van Ginhoven, B.D. Wirth, and R.J. Kurtz: J. Nucl. Mater., 2015, vol. 457, pp. 352–61.

    Article  Google Scholar 

  77. Y. Xu et al.: Acta Mater., 2015, vol 89, pp. 364–73.

    Article  Google Scholar 

  78. I. Hilger et al., J. Alloys Compounds, 2016, vol. 685, pp. 927-35.

    Article  Google Scholar 

  79. J.R. Rieken: Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel, Graduate Theses and Dissertations, Paper 10459, Iowa State University, 2011.

  80. D.T. Hoelzer: Regular and ODS Ferritic Steel as Structural Materials for Power Plant HHFC’s, Presentation in International HHFC Workshop on Readiness to Proceed from Near Term Fusion Systems to Power Plants, UCSD, La Jolla, CA, December 10–12, 2008.

  81. J.R. Rieken, I.E. Anderson, and M.J. Kramer: Simplified Powder Processing and Microstructural Control of Fe-based ODS Alloys (Presentation in “Fe-Based ODS Alloys: Role and Future Applications” Fabrication, Microstructure Preservation & Mechanical Properties, University of California-San Diego, San Diego, CA, November 18th, 2010.

  82. M. Serrano, M. Hernandez-Mayoral, and A. Garcia-Junceda: J. Nucl. Mater., 2012, vol. 428, pp. 103–109.

    Article  Google Scholar 

  83. F.N. Rhines, W.A. Johnson, and W.A. Anderson: Trans. AIME, 1942, vol. 147, pp. 205–21.

    Google Scholar 

  84. Metglas Inc. product list. http://metglas.com/products/. Accessed 19 May 2016.

  85. I. Grants, G. Gerbeth, I. Kaldre, A. Bojarevičs, and M. Sarma: Magnetically induced acoustic cavitation for production of metal matrix nano-composites, Paper presented at the 8th International Conference on Electromagnetic Processing of Materials (EPM 2015), Cannes, October 13–15, 2015.

Download references

Acknowledgments

This work contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA). The University of Oxford authors thank the UK Engineering and Physical Science and Research Council and the National Nuclear Laboratory for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bergner.

Additional information

Manuscript submitted February 2, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergner, F., Hilger, I., Virta, J. et al. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys. Metall Mater Trans A 47, 5313–5324 (2016). https://doi.org/10.1007/s11661-016-3616-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3616-2

Keywords

Navigation