Skip to main content
Log in

Fabrication and Characterization of Naturally Selected Epitaxial Fe-{111} Y2Ti2O7 Mesoscopic Interfaces: Some Potential Implications to Nano-Oxide Dispersion-Strengthened Steels

  • Symposium: Solid-State Interfaces II: Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The smallest features of ≈2 to 3 nm in nanostructured ferritic alloys (NFA), a variant of oxide dispersion-strengthened steels, include the Y2Ti2O7 complex oxide cubic pyrochlore phase. The interface between the bcc Fe-Cr ferrite matrix and the fcc nanometer-scale Y2Ti2O7 plays a critical role in the stability, strength, and damage tolerance of NFA. To complement other characterization studies of the actual nanofeatures (NF) themselves, mesoscopic interfaces were created by electron beam deposition of a thin Fe layer on a 5 deg miscut {111} Y2Ti2O7 bulk single crystal surface. While the mesoscopic interfaces may differ from those of the embedded NF, the former facilitate characterization of controlled interfaces, such as interactions with point defects and helium. The Fe-Y2Ti2O7 interfaces were studied using scanning electron microscopy, including electron backscatter diffraction, atomic force microscopy, X-ray diffraction, and transmission electron microscopy (TEM). The polycrystalline Fe layer has two general orientation relationships (OR) that are close to (a) the Nishiyama–Wasserman (NW) OR \( \left\{ {110} \right\}_{\text{Fe}} ||\left\{ {111} \right\}_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and \( \left\langle {100} \right\rangle_{\text{Fe}} ||\left\langle {110} \right\rangle_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and (b) \( \left\{ {100} \right\}_{\text{Fe}} ||\left\{ {111} \right\}_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and \( \left\langle {100} \right\rangle_{\text{Fe}} ||\left\langle {110} \right\rangle_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \). High-resolution TEM shows that the NW interface is near-atomically flat, while the {100}Fe grains are an artifact associated with a thin oxide layer. However, the fact that there is still a Fe-Y2Ti2O7 OR is significant. No OR is observed in the presence of a thicker oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.R. Odette, M.J. Alinger, and B.D. Wirth: Annu. Rev. Mater. Res., 2008, Vol. 38, pp. 471–503.

    Article  CAS  Google Scholar 

  2. Y. Dai, G.R. Odette, and T. Yamamoto: Compr. Nucl. Mater., 2012, Vol. 1(6), pp. 141–193.

    Article  CAS  Google Scholar 

  3. G.R. Odette, and D.T. Hoelzer: JOM, 2010, Vol. 62, pp. 84–92.

    Article  CAS  Google Scholar 

  4. M.J. Demkowicz, R.G. Hoagland, and J. P. Hirth: Phys. Rev. Lett., 2008, Vol. 100, pp. 136102.

    Article  CAS  Google Scholar 

  5. H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S. Poissonnet, Y. de Carlan, J. Bechade, T. Cozzika, and J. Malaplate: J. Nucl. Mater., 2009, Vol. 386–388, pp. 511–14.

    Article  Google Scholar 

  6. S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, and S. Ohnuki: Philos. Mag. Lett., 2004, Vol. 84, pp. 525–29.

    Article  CAS  Google Scholar 

  7. S. Yamashita, N. Akasaka, and S. Ohnuki: J. Nucl. Mater., 2004, Vol. 329–333, pp. 377–81.

    Article  Google Scholar 

  8. M. Klimiankou, R. Lindau, and A. Möslang: J. Nucl. Mater., 2004, Vol. 329–333, pp. 347–51.

    Article  Google Scholar 

  9. M. Klimiankou, R. Lindau, and A. Möslang: Micron, 2005, Vol. 36, pp. 1–8.

    Article  CAS  Google Scholar 

  10. T. Okuda, and M. Fujiwara: J. Mater. Sci. Lett., 1995, Vol. 14, pp. 1600–03.

    Article  CAS  Google Scholar 

  11. Y. Wu, E.M. Haney, N.J. Cunningham, and G.R. Odette: Acta Mater., 2012, Vol. 60, pp. 3456–68.

    Article  CAS  Google Scholar 

  12. J. Ciston, Y. Wu, G.R. Odette, and P. Hosemann: Microsc. Microalan., 2012, vol. 18, pp. 760–61.

    Article  Google Scholar 

  13. S.S. Vagarali, and G.R. Odette: J. Nucl. Mater., 1981, vol. 104, pp. 1239–43.

    Article  CAS  Google Scholar 

  14. H. Trinkaus: J. Nucl. Mater., 1983, Vol. 118, pp. 39–49.

    Article  CAS  Google Scholar 

  15. H. Ullmaier: Nucl. Fusion, 1984, Vol. 24, pp. 1039–83.

    Article  CAS  Google Scholar 

  16. G.R. Odette: J. Nucl. Mater., 1984, Vol. 122, pp. 435–41.

    Article  CAS  Google Scholar 

  17. G.R. Odette, P. Miao, D.J. Edwards, T. Yamamoto, R.J. Kurtz, and H. Tanigawa: J. Nucl. Mater., 2011, Vol 417, pp. 1001–04.

    Article  CAS  Google Scholar 

  18. S.Y. Zhong, J. Ribis, V. Klosek, Y. de Carlan, N. Lochet, V. Ji, and M.H. Mathon: J. Nucl. Mater., 2012, Vol. 428, pp. 154–59.

    Article  CAS  Google Scholar 

  19. M. J. Alinger, G. R. Odette, and D. T. Hoelzer: J. Nucl. Mater., Vol. 329–333, 2004, pp. 382–86.

    Article  Google Scholar 

  20. J.S. Gardner, B.D. Gaulin, and D.M. Paul: J. Cryst. Growth, 1998, Vol. 191, pp. 740–45.

    Article  CAS  Google Scholar 

  21. H.A. Dabkowska and A.B. Dabkowski: Spring. Handb. Cryst. Growth., 2010, pp. 367–92.

  22. M.B. Johnson, D.D. James, A. Bourque, H.A. Dabkowska, and B.D. Gaulin: J. Solid State Chem., 2009, Vol. 182, pp. 725–29.

    Article  CAS  Google Scholar 

  23. N.I. Kato: J. Electron Microsc., 2004, Vol. 53, pp. 451–58.

    Article  CAS  Google Scholar 

  24. A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsasser, and P. Gumbsch: Phys. Rev. B, 2008, Vol. 77, pp. 094131.

    Article  Google Scholar 

  25. E.A. Marquis: Appl. Phys. Lett., 2008, Vol. 93, pp. 181904.

    Article  Google Scholar 

  26. C.A. Williams, E.A. Marquis, A. Cerezo, and G.D. Smith: J. Nucl. Mater., 2010, Vol. 400, pp. 37–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank E. Haney, G. Seward, M. Cornish, D. Stave, M. Zepeda, Y. Li, and D. Klingensmith (UCSB) for their help at various stages during the data acquisition and analysis. The current study was supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under grant DE-FG03-94ER54275. The characterization was done at the CNSI Microstructure and Microanalysis Facility supported by the UCSB NSF MSEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiberiu Stan.

Additional information

Manuscript submitted November 1, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stan, T., Wu, Y., Odette, G.R. et al. Fabrication and Characterization of Naturally Selected Epitaxial Fe-{111} Y2Ti2O7 Mesoscopic Interfaces: Some Potential Implications to Nano-Oxide Dispersion-Strengthened Steels. Metall Mater Trans A 44, 4505–4512 (2013). https://doi.org/10.1007/s11661-013-1827-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1827-3

Keywords

Navigation