Skip to main content

Advertisement

Log in

High Strength and High Ductility of Ultrafine-Grained, Interstitial-Free Steel Produced by ECAE and Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interstitial-free steel (IF steel) underwent severe plastic deformation by equal-channel angular extrusion/pressing (ECAE/P) to improve its strength, and then it was annealed to achieve a good strength-ductility balance. The coarse-grained microstructure of IF steel was refined down to the submicron level after eight-pass ECAE. The ultrafine-grained (UFG) microstructure with high dislocation density brought about substantially improved strength but limited tensile ductility. The limited ductility was attributed to the small, uniform elongation caused by early plastic instability. The annealing at temperatures below 723 K (450 °C) for 1 hour did not lead to remarkable softening, whereas annealing at temperatures up to 923 K (650 °C) resulted in complete softening depending on the development of recrystallization. Therefore, the temperature of approximately 923 K (650 °C) can be considered as a critical recrystallization temperature for UFG IF steel. The annealing at 873 K (600 °C) for different time intervals resulted in different stress–strain response. Uniform tensile elongation increased at the expense of strength with annealing time intervals. After annealing at 873 K (600 °C) for 60 minutes, the yield strength, tensile strength, uniform elongation, and total elongation were found to be 320 MPa, 485 MPa, 15.1 pct, and 33.7 pct, respectively, showing the better combination of strength and ductility compared with cold-rolled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.-H. Lee, H. Utsunomiya, and T. Sakai: Metall. Mater. Trans. A, 2004, vol. 45A, pp. 2177–81.

    Google Scholar 

  2. T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman: Int. J. Fatigue, 2008, vol. 30, pp. 426–36.

    Article  CAS  Google Scholar 

  3. O. Saray, G. Purcek, and I. Karaman: Rev. Adv. Mater. Sci., 2010, vol. 25, pp. 42–51.

    CAS  Google Scholar 

  4. G.J. Raab, R. Valiev, T.C. Lowe, and Y.T. Zhu: Mater. Sci. Eng. A, 2004, vol. 382, pp. 30–34.

    Article  Google Scholar 

  5. K.-T. Park and D.H. Shin: Mater. Sci. Eng. A, 2002, vol. 334, pp. 76–86.

    Google Scholar 

  6. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and S.G. Sutter: Int. J. Mater. Res., 2006, vol. 97, pp. 1328–36.

    CAS  Google Scholar 

  7. T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1946–55.

    Article  CAS  Google Scholar 

  8. T. Niendorf, H.J. Maier, D. Canadinc, and I. Karaman: Mater. Sci. Eng. A, 2009, vol. 503, pp. 160–62.

    Article  Google Scholar 

  9. H.S. Kim, W.S. Ryu, M. Janacek, S.C. Baik, and Y. Estrin: Adv. Eng. Mater., 2005, vol. 7, pp. 43–46.

    Article  CAS  Google Scholar 

  10. B. Yan, S. Dower, L. Jin, J. Shen, Y. Huang, and S. Jiao: Mater. Sci. Forum, 2008, vols. 584–586, pp. 631–36.

    Article  Google Scholar 

  11. Y.H. Jin and M.Y. Huh: J. Mater. Sci., 2004, vol. 39, pp. 5311–14.

    Article  CAS  Google Scholar 

  12. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Metall. Trans., 2004, vol. 45, no. 7, pp. 2272–81.

    CAS  Google Scholar 

  13. T.S. Wang, Z. Li, B. Zhang, X.J. Zhang, J.M. Deng, and F.C. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2798–801.

    Article  Google Scholar 

  14. Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2280–83.

    Article  CAS  Google Scholar 

  15. N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: ISIJ Int., 2008, vol. 48, no. 8, pp. 1114–21.

    Article  CAS  Google Scholar 

  16. D.H. Shin: Metall. Mater. Int., 2001, vol. 7, no. 6, pp. 573–77.

    Article  CAS  Google Scholar 

  17. Y.M. Wang and E. Ma: Acta Mater., 2004, vol. 52, pp. 1699–709.

    Article  CAS  Google Scholar 

  18. C.Y. Yu, P.L. Sun, P.W. Kao, and C.P. Chang: Scripta Mater., 2005, vol. 52, pp. 359–63.

    Article  CAS  Google Scholar 

  19. Y.-H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, and E.J. Lavernia: Adv. Mater., 2008, vol. 20, pp. 3028–33.

    Article  CAS  Google Scholar 

  20. R.E. Barber, T. Dudo, P.B. Yasskin, and K.T. Hartwig: Scripta Mater., 2004, vol. 51, no. 5, pp. 373–77.

    Article  CAS  Google Scholar 

  21. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng. A, 1998, vol. 257, no. 2, pp. 328–32.

    Article  Google Scholar 

  22. T. Niendorf, J. Dadda, D. Canadinc, H.J. Maier, and I. Karaman: Mater. Sci. Eng. A, 2009, vol. 517, pp. 225–34.

    Article  Google Scholar 

  23. B.L. Bramfitt and A.O. Benscoter: Metallographers Guide: Practices and Procedures for Irons and Steels, ASM International, Materials Park, OH, 2002, pp. 226–27.

    Google Scholar 

  24. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59–67.

    Article  Google Scholar 

  25. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scripta Mater., 2001, vol. 45, pp. 747–52.

    Article  CAS  Google Scholar 

  26. K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu: Acta Mater., 2004, vol. 52, pp. 4101–10.

    Article  CAS  Google Scholar 

  27. A. Belyakov, Y. Kimura, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 403, pp. 249–59.

    Article  Google Scholar 

  28. A.A. Gazder, W. Cao, C.H.J. Davies, and E.V. Pereloma: Mater. Sci. Eng. A, 2008, vol. 497, pp. 341–52.

    Article  Google Scholar 

  29. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui, and H.J. Maier: Mater. Sci. Eng. A, 2009, vol. 517, nos. 1–2, pp. 97–104.

    Google Scholar 

  30. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.

    Article  CAS  Google Scholar 

  31. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–99.

    Article  CAS  Google Scholar 

  32. I. Samajdar, B. Veerlinden, P. Van Houtte, and D. Vanderschueren: Scripta Mater., 1997, vol. 37, no. 6, pp. 869–74.

    Article  CAS  Google Scholar 

  33. J. Gil Sevillano and J. Aldazabal: Scripta Mater., 2004, vol. 51, pp. 795–800.

  34. X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 204–13.

    Google Scholar 

  35. Y. Zhao, T. Topping, Y. Li, and E.J. Lavernia: Adv. Eng. Mater., 2011, vol. 13, no. 9, pp. 865–71.

    Article  CAS  Google Scholar 

  36. J. Laws: Mater. Sci. Lett., 1983, vol. 2, pp. 527–31.

    Article  Google Scholar 

  37. S.P. Joshi, K.T. Ramesh, B.Q. Han, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2397–2404.

    Article  CAS  Google Scholar 

  38. S.S Hazra, E.V. Pereloma, and A.A. Gazder: Acta Mater., 2011, vol. 59, no. 10, pp. 4015–29.

    Article  CAS  Google Scholar 

  39. R. Rana, S.B. Singh, W. Bleck, and O.N. Mohanty: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1483–92.

    Article  CAS  Google Scholar 

  40. J.R. Davis: Tensile Testing, 2nd ed., ASM International, Materials Park, OH, 2004, pp. 24–25.

    Google Scholar 

  41. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Scripta Mater., 2008, vol. 59, pp. 627–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported mainly by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 107M618 and under 2219-International Postdoctoral Research Scholar Program. This study was also supported partly by Scientific Research Projects of Karadeniz Technical University under Grant 2008.112.003.6. I.K. acknowledges the support from the U.S. National Science Foundation, Division of CMMI, Grant 0900187, and International Materials Institute Program through Grant DMR 08-44082, Office of Specific Programs, Division of Materials Research. H.J.M. acknowledges support by Deutsche Forschungsgemeinschaft. The authors thank Eregli Iron and Steel (ERDEMIR), Inc., Zonguldak, Turkey for their support in kindly supplying the initial materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gencaga Purcek.

Additional information

Manuscript submitted May 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purcek, G., Saray, O., Karaman, I. et al. High Strength and High Ductility of Ultrafine-Grained, Interstitial-Free Steel Produced by ECAE and Annealing. Metall Mater Trans A 43, 1884–1894 (2012). https://doi.org/10.1007/s11661-011-1063-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1063-7

Keywords

Navigation