Skip to main content

Advertisement

Log in

Elevated-Temperature Mechanical Behavior of As-Cast and Wrought Ti-6Al-4V-1B

  • Symposium: Structural Materials for the Americas
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work studied the effect of processing on the elevated-temperature [728 K (455 °C)] fatigue deformation behavior of Ti-6Al-4V-1B for maximum applied stresses between 300 to 700 MPa (R = 0.1, 5 Hz). The alloy was evaluated in the as-cast form as well as in three wrought forms: cast-and-extruded, powder metallurgy (PM) rolled, and PM extruded. Processing caused significant differences in the microstructure, which in turn impacted the fatigue properties. The PM-extruded material exhibited a fine equiaxed α + β microstructure and the greatest fatigue resistance among all the studied materials. The β-phase field extrusion followed by cooling resulted in a strong α-phase texture in which the basal plane was predominately oriented perpendicular to the extrusion axis. The TiB whiskers were also aligned in the extrusion direction. The α-phase texture in the extrusions resulted in tensile-strength anisotropy. The tensile strength in the transverse orientation was lower than that in the longitudinal orientation, but the strength in the transverse orientation remained greater than that for the as-cast Ti-6Al-4V. The ratcheting behavior during fatigue is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. W.O. Soboyejo, R.J. Lederich, and S.M.L. Sastry: Acta Metall., 1994, vol. 42, pp. 2579–91.

    Article  CAS  Google Scholar 

  2. S. Tamirisakandala, D.B. Miracle, R. Srinivasan, and J.S. Gunasekera: Adv. Mater. Process., 2006, vol. 12, pp. 41–43.

    Google Scholar 

  3. W. Chen, C.J. Boehlert, E.A. Payzant, and J.Y. Howe: Int. J. Fatigue, 2010, vol. 32, pp. 627–38.

    Article  CAS  Google Scholar 

  4. K.B. Panda and K.S. Ravi Chandran: Acta Mater., 2006, vol. 54, pp. 1641–57.

  5. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle: Scripta Mater., 2005, vol. 53, pp. 1421–26.

    Article  CAS  Google Scholar 

  6. S. Gorsse and D.B. Miracle: Acta Mater., 2003, vol. 51, pp. 2427–42.

    Article  CAS  Google Scholar 

  7. K.S. Ravi Chandran, K.B. Panda, and S.S. Sahay: JOM, 2004, vol. 56, pp. 42–48.

    Article  Google Scholar 

  8. T. Saito: JOM, 2004, vol. 56, pp. 33–36.

    Article  CAS  Google Scholar 

  9. W. Chen and C.J. Boehlert: Mater. Sci. Eng. A, 2008, vol. 494, pp. 132–38.

    Article  Google Scholar 

  10. C.J. Boehlert and W. Chen: Mater. Trans., 2009, vol. 50, pp. 1690–1703.

    Article  CAS  Google Scholar 

  11. C. Schuh and D.C. Dunand: Scripta Mater., 2001, vol. 45, pp. 631–38.

    Article  CAS  Google Scholar 

  12. S.I. Lieberman: Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 2007.

  13. T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, and C.M. Ward-Close: Mater. Sci. Eng. A, 2000, vol. 282, pp. 240–50.

    Article  Google Scholar 

  14. W.O. Soboyejo, W. Shen, and T.S. Srivatsan: Mech. Mater., 2004, vol. 36, pp. 141–59.

    Article  Google Scholar 

  15. W. Lu, D. Zhang, Z. Zhang, R. Wu, T. Sakata, and H. Mori: Scripta Mater., 2001, vol. 44, pp. 2449–55.

    Article  CAS  Google Scholar 

  16. I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4983–93.

    Article  CAS  Google Scholar 

  17. C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, and D.B. Miracle: Scripta Mater., 2006, vol. 55, pp. 465–68.

    Article  CAS  Google Scholar 

  18. C.J. Boehlert, S. Tamirisakandala, W.A. Curtin, and D.B. Miracle: Scripta Mater., 2009, vol. 61, pp. 245–48.

    Article  CAS  Google Scholar 

  19. I. Sen, K. Gopinath, R. Datta, and U. Ramamurty: Acta Mater., 2010, vol. 58, pp. 6799–6809.

    Article  CAS  Google Scholar 

  20. S.I. Lieberman, A.M. Gokhale, S. Tamirisakandala, and R.B. Bhat: Mater. Characterization, 2009, vol. 60, pp. 957–63.

    Article  CAS  Google Scholar 

  21. I. Sen, L. Maheshwari, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty: Mater. Sci. Eng. A, 2009, vol. 518, pp. 162–66.

    Article  Google Scholar 

  22. F. Yolton: Paper presented at the 138th TMS Annual Meeting and Exhibition, Orlando, FL, 2007.

  23. G.A. Hartman and S.M. Russ: in Metal Matrix Composites: Testing, Analysis and Failure Modes, W.S. Johnson, ed., ASTM, Philadelphia, PA, 1989, pp. 43–53.

  24. K. Van Acker, J. Root, P. Van Houtte, and E. Aernoudt: Acta Mater., 1996, vol. 44, pp. 4039–49.

    Article  Google Scholar 

  25. H.G. Read: Scripta Mater., 1997, vol. 36, pp. 921–28.

    Article  CAS  Google Scholar 

  26. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  27. Allvac technical data sheet. Available from: http://www.allvac.com/allvac/pages/PDF/tech/TI-040pct20Tipct206-4.pdf.

  28. S. Tamirisakandala, R.B. Bhat, D.B. Miracle, S. Boddapati, R. Bordia, R. Vanover, and V.K. Vasudevan: Scripta Mater., 2005, vol. 53, pp. 217–22.

    Article  CAS  Google Scholar 

  29. R.B. Bhat, S. Tamirisakandala, D.B. Miracle, and V.A. Ravi: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 845–57.

    CAS  Google Scholar 

  30. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994, p. 5.

    Google Scholar 

  31. C. Schuh and D.C. Dunand: Int. J. Plasticity, 2001, vol. 17, pp. 317–40.

    Article  CAS  Google Scholar 

  32. T.R. Bieler, P.D. Nicolaou, and S.L. Semiatin: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 129–40.

    Article  CAS  Google Scholar 

  33. L. Zeng and T.R. Bieler: Mater. Sci. Eng. A, 2005, vol. 392, pp. 403–14.

    Article  Google Scholar 

  34. J.A. Vreeling, V. Ocelik, and J.T.M. De Hosson: Acta Mater., 2002, vol. 50, pp. 4913–24.

  35. G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, and R.C. Pond: Acta Mater., 2004, vol. 52, pp. 821–32.

    Article  CAS  Google Scholar 

  36. I. Lonardelli, N. Gey, H.R. Wenk, M. Humbert, S.C. Vogel, and L. Lutterotti: Acta Mater., 2007, vol. 55, pp. 5718–27.

    Article  CAS  Google Scholar 

  37. G. Lütjering and J.C. Williams: Titanium, Springer-Verlag, Berlin, 2007, pp. 218–27.

    Google Scholar 

  38. F.H. Froes: in Handbook of Advanced Materials, J.K. Wessel, John Wiley and Sons, Inc., New York, NY, 2004, pp. 271–319.

  39. M. Peters, A. Gysler, and G. Lütjering: in Titanium ‘80, Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1981, vol. 1, pp. 1777–86.

  40. C.A. Stubbington and A.W. Bowen: J. Mater. Sci., 1974, vol. 9, pp. 941–47.

    Article  CAS  Google Scholar 

  41. J.C. Williams and G. Lütjering: Titanium ‘80, Science and Technology, TMS-AIME, Warrendale, PA, 1981, vol. 1, pp. 671–82.

  42. M. Peters, and G. Lütjering: Report No. CS-2933, Electric Power Research Institute, Palo Alto, CA, 1983.

    Google Scholar 

  43. W. Trojahn: Diploma Thesis, Ruhr University Bochum, Bochum, Germany, 1980.

  44. L. Wagner and J.K. Bigoney: in Titanium and Titanium Alloys: Fundamentals and Applications, C. Leyens and M. Peters, eds., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003, pp. 153–85.

  45. N.E. Paton, R.G. Baggerly, and J.C. Williams: Rockwell Report No. SC 526.7FR, Rockwell, Seal Beach, CA, 1976.

  46. T. Hassan and S. Kyriakides: Int. J. Plasticity, 1994, vol. 10, pp. 149–84.

    Article  CAS  Google Scholar 

  47. W. Chen and C.J. Boehlert: Key Eng. Mater., 2010, vol. 436, pp. 195–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. S. Tamirisakandala (FMW Composites, Inc.) and Dr. D.B. Miracle (Air Force Research Laboratory) for providing the material used in this study as well as their helpful technical support and guidance. The authors are also grateful to Dr. Stuart Wright (EDAX-TSL, Inc.) for technical assistance with the EBSD acquisition and analysis. A portion of this research work was performed at the ORNL SHaRE User Facility, which is supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. In particular, Mr. Larry Walker and Ms. Kathy Thomas are acknowledged for their technical assistance with the microprobe data collection and TEM sample preparation, respectively. Dr. Yukinori Yamamoto is acknowledged for his assistance with sample preparation for mechanical testing. The authors are also grateful to Messrs. Jerome Lebouef, Derek Miller, and Bryan Kuhr of Michigan State University for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Chen.

Additional information

Manuscript submitted July 21, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Boehlert, C.J., Howe, J.Y. et al. Elevated-Temperature Mechanical Behavior of As-Cast and Wrought Ti-6Al-4V-1B. Metall Mater Trans A 42, 3046–3061 (2011). https://doi.org/10.1007/s11661-011-0618-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0618-y

Keywords

Navigation