Skip to main content
Log in

Austenite formation during intercritical annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A systematic experimental study has been conducted on ferrite recrystallization and intercritical austenite formation for two low-carbon steels with chemical compositions typically used for dual-phase and transformation-induced plasticity (TRIP) steels. Different initial heating rates, holding temperatures, and times were applied to the materials to examine the ferrite recrystallization and austenite formation kinetics. An Avrami model was developed to describe the isothermal ferrite recrystallization behavior and was applied successfully to the nonisothermal conditions. It was found that the initial heating rate affects the isothermal austenite formation kinetics for both the hot-rolled and cold-rolled materials albeit the effect is more pronounced for the cold-rolled material. This can be attributed to the interaction between the ferrite recrystallization and austenite formation processes. Furthermore, it was found that the distribution of austenite phase is also affected by the ferrite recrystallization process. When ferrite recrystallization is completed before the austenite formation (i.e., under sufficiently slow heating rate conditions), austenite is to a large extent randomly distributed in the ferrite matrix. On the other hand, incomplete recrystallization of ferrite due to higher heating rates leads to the formation of banded austenite grains. It is proposed that this observation is characteristic of simultaneous recrystallization and austenite formation where moving ferrite grain boundaries do not provide suitable sites for austenite nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jacques, X. Cornet, P. Harlet, J. Ladriere, and F. Delannay: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2383–93.

    Article  CAS  Google Scholar 

  2. G.R. Speich and R.L. Miller: in Structure and Properties of Dual-Phase Steels, AIME, New York, NY, 1979, pp. 13–22.

    Google Scholar 

  3. J.O. Arnold and A. McWilliams: J. Iron Steel Inst., 1905, No. 2, pp. 352.

  4. G.A. Roberts and R.F. Mehl: Trans. ASM, 1943, vol. 31, pp. 613–50.

    Google Scholar 

  5. C.I. Garcia and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    Google Scholar 

  6. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Google Scholar 

  7. R.D. Lawson, D.K. Matlock, and G. Kraus: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., AIME, New York, NY, 1981, pp. 347–81.

    Google Scholar 

  8. U.R. Lenel: Scripta Metall., 1983, vol. 17, pp. 471–74.

    Article  CAS  Google Scholar 

  9. J.J. Yi, I.S. Kim, and H.S. Choi: Metall. Trans. A, 1985, vol. 16A, pp. 1237–45.

    CAS  Google Scholar 

  10. R.C. Reed, T. Akbay, Z. Shen, J.M. Robinson, and J.H. Root: Mater. Sci. Eng. A, 1998, vol. 256, pp. 152–65.

    Article  Google Scholar 

  11. W.J. Kaluba, R. Taillard, and J. Foct: Acta Mater., 1998, vol. 46, pp. 5917–27.

    Article  CAS  Google Scholar 

  12. J.D. Puskar, R.C. Dykhuizen, C.V. Robino, M.E. Burnett, and J.B. Kelley: in 41st Mechanical Working and Steel Processing Conf. Proc., ISS, Warrendale, PA, 1999, vol. XXXVII, pp. 625–35.

    Google Scholar 

  13. P. Wycliffe, G.R. Purdy, and J.D. Embury: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., AIME, New York, NY, 1981, pp. 59–83.

    Google Scholar 

  14. S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 191–97.

    CAS  Google Scholar 

  15. C. Atkinson, T. Akbay, and R.C. Reed: Acta Mater., 1995, vol. 43, pp. 2013–31.

    Article  CAS  Google Scholar 

  16. C. Garcia, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia: Scripta Mater., 1998, vol. 39, pp. 791–96.

    Article  Google Scholar 

  17. A. Jacot, M. Rappaz, and R.C. Reed: Acta Mater., 1998, vol. 46, pp. 3949–62.

    Article  CAS  Google Scholar 

  18. R. Mancini and C. Budde: Acta Mater., 1999, vol. 47, pp. 2907–11.

    Article  CAS  Google Scholar 

  19. S.W. Thompson, G.S. Fan, and P.R. Howell: in Phase Transform. Ferrous Alloys, Proc. Int. Conf., A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 43–47.

    Google Scholar 

  20. D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.

    CAS  Google Scholar 

  21. S. Sekino and N. Mori: Trans. Iron Steel Inst. Jpn., 1971, vol. 11, pp. 1181–83.

    Google Scholar 

  22. R. Petrov, L. Kestens and Y. Houbaert: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 883–90.

    CAS  Google Scholar 

  23. D. Quidort and Y.J.M. Brechet: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1010–17.

    CAS  Google Scholar 

  24. K. Mukunthan and E.B. Hawbolt: Metall. Trans. A, 1996, vol. 27A, pp. 3410–23.

    Article  CAS  Google Scholar 

  25. K.J. Lee: Scripta Mater., 1999, vol. 40, pp. 837–43.

    Article  CAS  Google Scholar 

  26. R.A. Oriani: Acta Metall., 1964, vol. 12, pp. 1399–409.

    Article  CAS  Google Scholar 

  27. H. Hu and S.R. Goodman: Metall. Trans., 1970, vol. 1, pp. 3057–64.

    CAS  Google Scholar 

  28. W.C. Leslie, F.J. Plecity, and J.T. Michalak: Trans. TMS-AIME, 1961, vol. 221, pp. 691–700.

    CAS  Google Scholar 

  29. W.C. Leslie, F.J. Plecity, and F.W. Aul: Trans. TMS-AIME, 1961, vol. 221, pp. 982–89.

    CAS  Google Scholar 

  30. E.A. Simielli, S. Yue, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 597–608.

    CAS  Google Scholar 

  31. G.J. Shiflet and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1413–32.

    CAS  Google Scholar 

  32. K. Magee, K. Mukunthan, and E.B. Hawbolt: in Recrystallization ’90, T. Chandra, ed., TMS, Warrendale, PA, 1990, pp. 393–98.

    Google Scholar 

  33. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Pergamon, New York, NY, 1995, pp. 127–71.

    Google Scholar 

  34. H. Oikawa: Technol. Rep. Tohoku Univ., 1983, vol. 48, pp. 7–77.

    CAS  Google Scholar 

  35. J. Huang; R.P. Hammond, K. Conlon, and W.J. Poole: Proc. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, B.C. De Cooman, ed., Wissenschaftsverlag Mainz GmbH, Aachen, 2002, pp. 187–91.

    Google Scholar 

  36. Mecozzi, J. Sietsma, S. van der Zwaag, M. Apel, P. Schaffnit, and I. Steinbach: in Austenite Formation and Decomposition, E.B. Damm and M.J. Merwin, eds., ISS and TMS, Warrendale, PA, 2003, pp. 353–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Poole, W.J. & Militzer, M. Austenite formation during intercritical annealing. Metall Mater Trans A 35, 3363–3375 (2004). https://doi.org/10.1007/s11661-004-0173-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0173-x

Keywords

Navigation