Skip to main content
Log in

Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognition for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 90.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brisco B, Brown RJ, Hirose T, et al.(2014) Precision agriculture and the role of remote sensing: a review. Canadian Journal of Remote Sensing 24 (3): 315–327. DOI: 10.1080/07038992. 1998.10855254

    Article  Google Scholar 

  • Liaghat S, Balasundram SK (2010) A review: the role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences 5 (1): 50–55.

    Article  Google Scholar 

  • Huang YQ, Cui WH, Zhang YJ, et al. (2012) Research on development of agricultural geographic information ontology. Journal of Integrative Agriculture 11 (5): 865–877. DOI: 10.1016 /S2095-3119(12)60077-X

    Article  Google Scholar 

  • Ma L, Cheng L, Han WQ, et al.(2014) Cultivated land information extraction from high-resolution unmanned aerial vehicle imagery data. Journal of Applied Remote Sensing 8 (1): 083673. DOI: 10.1117/I.JRS.8.083673

    Article  Google Scholar 

  • Cheng YX, Huang JF, Han ZL, et al. (2013) Cold damage risk assessment of double cropping rice in Hunan, China. Journal of Integrative Agriculture 12 (2): 352–363. DOI: 10.1016/S2095-3119(13)60235-X

    Article  Google Scholar 

  • Diaz-Varela RA, Zarco-Tejada PJ, Angileri V, et al. (2014) Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle. Journal of Environmental Management 134: 117–126. DOI: 10.1016/j.jenvman.2014.01.006

    Article  Google Scholar 

  • Ding JL, Wu MC, Tashpolat T (2011) Study on soil salinization information in arid region using remote sensing technique. Agricultural Sciences in China 10 (3): 404–411. DOI: 10.1016/S1671-2927(11)60019-9

    Article  Google Scholar 

  • Corbane C, Raclot D, Jacob F, et al. (2008) Remote sensing of soil surface characteristics from a multiscale classification approach. Catena 75 (3): 308–318. DOI: 10.1016/j.catena.2008. 07.009

    Article  Google Scholar 

  • Liu EQ, Zhou WC, Zhou JM, et al. (2013) Combining spectral with texture features into object-oriented classification in mountainous terrain using advanced land observing satellite image. Journal of Mountain Science 10 (5): 768–776. DOI: 10.1007/s11629-013-2532-9

    Article  Google Scholar 

  • Feng MC, Yang WD, Cao LL, et al. (2009) Monitoring winter wheat freeze injury using multi-temporal MODIS data. Agricultural Sciences in China 8 (9): 1053–1062. DOI: 10.1016/S1671-2927(08)60313-2

    Article  Google Scholar 

  • Ozdogan M, Yang Y, Allez G, et al. (2010) Remote sensing of irrigated agriculture: opportunities and challenges. Remote sensing 2 (9): 2274–2304. DOI: 10.3390/rs2092274

    Article  Google Scholar 

  • Lu H, Liu C, Li NW, et al.(2015) Segmentation of high spatial resolution remote sensing images of mountainous areas based on the Improved Mean Shift Algorithm. Journal of Mountain Science 12 (3): 671–681. DOI: 10.1007/s11629-014-3332-6

    Article  Google Scholar 

  • Andrea S, Albert R (2009) Texture and scale in Object-Based analysis of subdecimeter resolution Unmanned Aerial Vehicle(UAV) imagery. IEEE Transactions on Geoscience and Remote Sensing 47 (3): 761–769. DOI: 10.1109/TGRS.2008.2009355

    Article  Google Scholar 

  • Rango A, Laliberte AS(2010) Impact of flight regulations on effective use of unmanned aircraft systems for natural resources applications. Journal of Applied Remote Sensing 4 (1): 043539. DOI: 10.1117/I.JRS.1.3474649

    Article  Google Scholar 

  • Ma L, Cheng L, Li MC, et al. (2015) Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing 102 (5): 14–27. DOI: 10.1016/j.isprsjprs.2014.12.026

    Article  Google Scholar 

  • Laliberte AS, Rango A (2011) Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GIScience & Remote Sensing 48 (1): 4–23. DOI: 10.2747/1548-1603.48.1.4

    Article  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313 (5786): 504–507. DOI: 10.1126/science.1127647

    Article  Google Scholar 

  • Bengio Y, Lecun Y (1995) Convolutional networks for images, speech, and time-Series. The Handbook of Brain Theory and Neural Networks, Cambridge: MIT Press. 3361:310.

    Google Scholar 

  • Lu H, Li YS, Tang M (2011) Evaluation and selection of segmentation scale with object-oriented method in multiple source remote sensing image of mountain areas. Journal of Mountain Science 29 (6): 687–694. (In Chinese)

    Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment 80 (1): 185–201. DOI:10.1016/S0034-4257(01)00295-4

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2013SCU11006), the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying, Mapping and Geoinformation of China (Grant NO. DM2014SC02); and the Key Laboratory of Geospecial Information Technology, Ministry of Land and Resources of China (Grant NO. KLGSIT2015- 04). Finally, Lu H wants to thank, in particular, the invaluable support received from Fu X over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-wen Li.

Additional information

http://orcid.org/0000-0002-3649-0983

http://orcid.org/0000-0003-4229-3748

http://orcid.org/0000-0002-5235-4025

http://orcid.org/0000-0002-5244-7832

http://orcid.org/0000-0003-5752-3821

http://orcid.org/0000-0003-2037-1282

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Fu, X., Liu, C. et al. Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning. J. Mt. Sci. 14, 731–741 (2017). https://doi.org/10.1007/s11629-016-3950-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3950-2

Keywords

Navigation