Skip to main content
Log in

Effect of climate change on seasonal water use efficiency in subalpine Abies fabri

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions, and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency (WUE) to annual and seasonal increases in temperature with or without CO2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model (AVIM2). Four future climate scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production (GPP) and net primary production (NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However, warmer temperature together with rising CO2 concentrations significantly increase the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index (LAI) and soil temperature. The comparison of the simulated results with and without CO2 fertilization shows that CO2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderregg WR, Ballantyne AP, Smith WK et al. (2015) Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America 112(51): 15591–15596. DOI: 10.1073/pnas.1521479112

    Google Scholar 

  • Arnell NW (2003) Effects of IPCC SRES emissions scenarios on river runoff: a global perspective. Hydrology and Earth System Science 7(5): 619–641. DOI: 10.5194/hess-7-619-2003

    Article  Google Scholar 

  • Baldocchi D (2008) Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany 56(1): 1–26. DOI: 10.1071/BT07151

    Article  Google Scholar 

  • Ballantyne AP, Alden CB, Miller JB, et al. (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488(7409): 70–72. DOI: 10.1038/nature11299

    Article  Google Scholar 

  • Blyth E, Harding RJ (2011) Methods to separate observed global evapotranspiration into the interception, transpiration and soil evaporation components. Hydrological Process 25: 4063–4068. DOI: 10.1002/hyp.8409

    Article  Google Scholar 

  • Boisvenue C, Running S (2006) Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Global Change Biology 12(5): 862–882. DOI: 10.1111/j.1365-2486.2006.01134.x

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444–1449. DOI: 10.1126/science.1155121

    Article  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology 10(10): 1756–1766. DOI: 10.1111/j.1365-2486.2004.00816.x

    Article  Google Scholar 

  • Bonito GM, Coleman DC, Haines BL, et al. (2003) Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient? Forest Ecology and Management 176(1–3): 563–574. DOI: 10.1016/S0378-1127(02)00234-7

    Article  Google Scholar 

  • Camarero JJ, Gazol A, Galvan JD, et al. (2015) Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Global Change Biology 21(2): 738–749. DOI: 10.1111/gcb.12787

    Article  Google Scholar 

  • Cao M, Woodward FI (1998) Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology 4(2): 185–198. DOI: 10.1046/j.1365-2486.1998.00125.x

    Article  Google Scholar 

  • Chen ZJ, Zhang XL, He XY, et al. (2015) Response of radial growth to warming and CO2 enrichment in southern Northeast China: a case of pinus tabularformis. Climatic Change 130(4): 559–571. DOI: 10.1007/s10584-015-1356-8

    Article  Google Scholar 

  • Cheng GW, Luo J (2002) Successional features and dynamic simulation of sub-alpine forest in the Gongga Mountain, China. Acta Ecologica Sinica 22(7): 1049–1056. (In English Abstract). DOI: 1000-0933(2002)07-1049-08

    Google Scholar 

  • Cheng GW, Luo J (2003) The carbon accumulation and dissipation features of sub-alpine woodland in Mt. Gongga. Acta Geographica Sinica 58(2): 179–185. DOI: 10.1007/BF02873142

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149(1): 78–90. DOI: 10.1007/BF00386231

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, et al. (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences of the United States of America 104(35): 14014–14019. DOI: 10.1073/pnas.0706518104

    Article  Google Scholar 

  • Friend AD, Lucht W, Rademacher TT, et al. (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 111(9): 3280–3285. DOI: 10.1073/pnas.1222477110

    Article  Google Scholar 

  • Girardin MP, Bernier PY, Rualier F, et al. (2011) Testing for a CO2 fertilization effect on growth of Canadian boreal forests. Journal of Geophysical Research 116(G1): G01012. DOI: 10.1029/2010JG001287

    Article  Google Scholar 

  • Harte J, Torn MS, Chang FR, et al. (1995) Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications 6(1): 132–150. DOI: 10.2307/1942058

    Article  Google Scholar 

  • He YR, Zhang BH, Huang CM, et al. (2004) Diagnostic characteristics and taxonomic classification of forest soils on the east slopes of the Gongga Mountain. Journal of Glaciology and Geocryology 26(1): 27–32. DOI: 1000-0240(2004)01-0027-06

    Google Scholar 

  • Huang M, Ji JJ, Li KR, et al. (2007) The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B 59(3): 439–448. DOI: 10.1111/j.1600-0889.2007.00280.x

    Article  Google Scholar 

  • Huang MT, Piao SL, Sun Y, et al. (2015) Changing in terrestrial ecosystem water-use efficiency over the last three decades. Global Change Biology 21(6): 2366–2378. DOI: 10.1111/gcb.12873

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA, et al. (2004) Convergence across biomes to a common rain-use efficiency. Nature 429: 651–654. DOI: 10.1038/nature02561

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Solomon S, Qin D, Manning M, (eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press.

    Google Scholar 

  • IPCC (2013) Climate Change 2013:The Physical Science Basis. Stocker TF, Qin D, Plattner GK, (eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press. DOI: 10.1017/CBO9781107415324

    Google Scholar 

  • Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499: 324–327. DOI: 10.1038/nature12291

    Article  Google Scholar 

  • Ji JJ, Hu Y (1989) A simple land surface process model for use in climate study. Acta Metetrological Sinica 3: 344–353

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, et al. (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467: 951–954. DOI: 10.1038/nature09396

    Article  Google Scholar 

  • Körner C, Asshoff R, Bignucolo H, et al. (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309: 1360–1362. DOI: 10.1126/science.1113977

    Article  Google Scholar 

  • Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell JG, Pataki DE, Pitelka L (eds.), Terrestrial Ecosystems in a Changing World. Berlin: Springer. pp. 336. DOI: 10.1007/978-3-540-32730-1_2

    Google Scholar 

  • Kreyling J (2010) Winter climate change: a critical factor for temperate vegetation performance. Ecology 91(7): 1939–1948. DOI: 10.1890/09-1160.1

    Article  Google Scholar 

  • Le Bauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2): 371–379. DOI: 10.1890/06-2057.1

    Article  Google Scholar 

  • Li JW, Luo YQ, Natali S, et al. (2014) Modeling permafrost thaw and ecosystem carbon cycle under annual and seasonal warming at an Arctic tundra site in Alaska. Journal of Geophysical Research 119(6): 1129–1146. DOI: 10.1002/2013JG002569

    Google Scholar 

  • Li MH, Xiao WF, Shi PL, et al. (2008) Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations. Plant, Cell and Environment 31(10): 1377–1387. DOI: 10.1111/j.1365-3040.2008.01848.x

    Article  Google Scholar 

  • Li W, Yang G, Chen H, et al. (2013) Soil available nitrogen, dissolved organic carbon and microbial biomass content along altitudinal gradient of the eastern slope of Gongga Mountain. Acta Ecologica Sinica 33(5): 266–271. DOI: 10.1016/j.chnaes.2013.07.006

    Article  Google Scholar 

  • Lin DL, Xian JY, Wan SQ (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist 188(1): 187–198. DOI: 10.1111/j.1469-8137.2010.03347.x

    Article  Google Scholar 

  • Lin Y, Wang GX, Guo JY, et al. (2011) Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China. Hydrological Processes 26(20): 3032–3040. DOI: 10.1002/hyp.8321

    Article  Google Scholar 

  • Liu XH, Zhao LJ, Chen T, et al. (2011) Combined tree-ring width and d13C to reconstruct snowpack depth: a pilot study in the Gongga Mountain, west China. Theoretical & Applied Climatology 103(1): 133–144. DOI: 10.1007/s00704-010-0291-x

    Article  Google Scholar 

  • Lu J, Ji J (2006) A simulation and mechanism analysis of longterm variations at land surface over arid/semi-arid area in north China. Journal of Geophysical Research 111(D9): D09306. DOI: 10.1029/2005JD006252

    Article  Google Scholar 

  • Lu JB, Sun G, McNulty SG, et al. (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of American Water Resources Association 41(3): 621–633. DOI: 10.1111/j.1752-1688.2005.tb03759.x

    Article  Google Scholar 

  • Lu XY, Cheng GW (2009) Climate change effects on soil carbon dynamics and greenhouse gas emissions in Abies fabri forest of subalpine, southwest China. Soil Biology & Biochemistry 41(5): 1015–1021. DOI: 10.1016/j.soilbio.2008.10.028

    Article  Google Scholar 

  • Lu XY, Cheng GW, Xiao FP, et al. (2008) Modeling effects of temperature and precipitation on carbon characteristics and GHGs emissions in Abies fabric forest of subalpine. Journal of Environmental Sciences 20(3): 339–346.

    Article  Google Scholar 

  • Luo YQ (2007) Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecololgy Evolution & Systematics 38(1): 683–712. DOI: 10.1146/annurev.ecolsys.38.091206. 095808

    Article  Google Scholar 

  • Mamtimin B, Et-Tantawi AMM, Schaefer D, et al. (2011) Recent trends of temperature change under hot and cold desert climates: comparing the Sahara (Libya) and Central Asia (Xinjiang, China). Journal of Arid Environment 75: 1105–1113. DOI: 10.1016/j.jaridenv.2011.06.007

    Article  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173–2176. DOI: 10.1126/science.1074153

    Article  Google Scholar 

  • Morison (1985) Sensitivity of stomata and water-use efficiency to high CO2. Plant Cell & Environment 8(6): 467–474. DOI: 10.1111/j.1365-3040.1985.tb01682.x

    Article  Google Scholar 

  • Niu SL, Wu M, Han Y, et al. (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist 177(1): 209–219. DOI: 10.1111/j.1469-8137.2007.02237.x

    Google Scholar 

  • Niu SL, Xing XR, Zhang Z, et al. (2011) Water-use efficiency in response to climate change: from leaf to ecosystem in a temperature steppe. Global Change Biology 17(2): 1073–1082. DOI: 10.1111/j.1365-2486.2010.02280.x

    Article  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, et al. (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell & Environment 22(6): 683–714. DOI: 10.1046/j.1365-3040.1999.00391.x

    Article  Google Scholar 

  • Norby RJ, De Lucia EH, Gielen B, et al. (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America 102: 18052–18056. DOI: 10.1073/pnas. 0509478102

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, et al. (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America 107: 19368–19373. DOI: 10.1073/pnas.1006463107

    Article  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution and Systematics 42: 181–203. DOI: 10.1146/annurev-ecolsys-102209-144647

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, et al. (1987) Division S-3-soil microbiology and biochemistry: Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal 51: 1173–1179. DOI: 10.2136/sssaj1987.03615995005100050015x

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, et al. (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles 21(3): GB3018. DOI: 10.1029/2006GB002888

    Article  Google Scholar 

  • Piao SL, Sitch W, Ciais P, et al. (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Chang Biology 19(7): 2117–2132. DOI: 10.1111/gcb.12187

    Article  Google Scholar 

  • Prior L, Bowman D (2014) Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Global Change Biology 20(9): 2793–2799. DOI: 10.1111/gcb.12540

    Article  Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Climatic Change 114(3): 527–547. DOI: 10.1007/s10584-012-0419-3

    Article  Google Scholar 

  • Salzer M, Hughes M, Bunn A, et al. (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the United States of America 106: 20348–20353. DOI: 10.1073/pnas.0903029106

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, et al. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMS: Part I. Model formulation. Journal of Climate 9(4): 676–705. DOI: 10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2

    Article  Google Scholar 

  • Schimel D, Stephens BB, Fisher JB (2015) Effects of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 112(2): 436–441. DOI: 10.1073/pnas.1407302112

    Article  Google Scholar 

  • Schwartz M, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12(2): 343–351. DOI: 10.1111/j.1365-2486.2005. 01097.x

    Article  Google Scholar 

  • Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society 111: 839–855. DOI: 10.1002/qj.49711146910

    Article  Google Scholar 

  • Shuttleworth WJ (1993) Evaporation. Chapter 4. In Handbook of Hydrology, Maidment DR. McGraw-Hill: New York, USA.

    Google Scholar 

  • Steduto P, Albrizio R (2005) Resource use efficiency of fieldgrown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agricultural and Forest Meteorology 130(3–4): 269–281. DOI: 10.1016/j.agrformet.2005.04.003

    Google Scholar 

  • Sun HL (2005) Ecosystems in China. Science Press, Beijing, China. (InChinese)

    Google Scholar 

  • Sun XY, Wang GX, Lin Y, et al. (2013) Intercepted rainfall in Abies fabri forest with different-aged stands in southwestern China. Turkish Journal of Agricultural and Forestry 37(4): 495–504. DOI: 10.3906/tar-1207-36

    Google Scholar 

  • Ukkola AM, Prentice C, Keenan TR, et al. (2015) Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change 6(1): 75–78. DOI: 10.1038/nclimate2831

    Article  Google Scholar 

  • Viviroli D, Dürr HH, Messerli B, et al. (2007) Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 22(7): W07447. DOI: 10.1029/2006WR005653

    Google Scholar 

  • Wan S, Xia J, Liu W, et al. (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90(10): 2700–2710. DOI: 10.1890/08-2026.1

    Article  Google Scholar 

  • Wang GX, Deng W, Yang Y, et al. (2011) The Advances, Priority and Developing Trend in Alpine Ecology. Journal of Mountain Science 29(2): 129–140 (In Chinese with English abstract). DOI: 1008-2786-(2011)2-129-12

    Google Scholar 

  • Wang GX, Ran F, Chang RY, et al. (2014) Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. Forest Ecology and Management 329: 255–263. DOI: 10.1016/j.foreco.2014.06.023

    Article  Google Scholar 

  • Wang L, Ouyang H, Peng K, et al. (2004) Distribution characteristics of SOM and nitrogen on the eastern slope of Gongga Mountain. Journal of Geophysical Sciences 14(4): 481–487. DOI: 10.1007/BF02837492

    Google Scholar 

  • Wu CY, Hember RA, Chen JM, et al. (2014) Accelerating forest growth enhancement due to climate and atmospheric changes in British, Colombia, Canada over 1956-2001. Scientific Reports 4(12): 4461. DOI: 10.1038/srep04461

    Google Scholar 

  • Wu GJ, Liu XH, Chen T, et al. (2015) Long-term variation of tree growth and intrinsic water-use efficiency in Schrenk spruce with increasing CO2 concentration and climate warming in the western Tianshn Mountains, China. Acta Physiol Plant 37(8): 150. DOI: 10.1007/s11738-015-1903-y

    Article  Google Scholar 

  • Wu YH, Li W, Zhou J, et al. (2013) Temperature and precipitation variations at tow meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades. Journal of Mountain Science 10(3): 370–377. DOI: 10.1007/s11629-013-2328-y

    Article  Google Scholar 

  • Xia J, Han Y, Zhang Z, et al. (2009) Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeoscience 6(8): 1361–1370. DOI: 10.5194/bg-6-1361-2009

    Article  Google Scholar 

  • Xia J, Chen J, Piao S, et al. (2014) Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience 7(3): 173–180. DOI: 10.1038/ngeO2093

    Article  Google Scholar 

  • Yin YH, Wu SH, Zhao DS, et al. (2013) Modeled effects of climate change on actual evapotranspiration in different ecogeographical regions in the Tibetan Plateau. Journal of Geophysical Research 23(2): 195–207. DOI: 10.1007/s11442-013-1003-0

    Google Scholar 

  • Yu GR, Song X, Wang QF, et al. (2007) Water use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist 177(4): 927–937. DOI: 10.1111/j.1469-8137.2007.02316.x

    Article  Google Scholar 

  • Zaehle S, Dalmonech D (2011) Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Current Opinion in Environmental Sustainability 3(3): 311–320. DOI: 10.1016/j.cosust.2011.08.008

    Article  Google Scholar 

  • Zaehle S (2013) Terrestrial nitrogen-carbon cycle interactions at the global scale. Philosophical Transactions of the Royal Society of London 368: 20130125. DOI: 10.1098/rstb.2013.0125

    Article  Google Scholar 

  • Zak DR, Holmes WE, Pregitzer KS (2007) Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Ecology 88(10): 2630–2639. DOI: 10.1890/06-1819.1

    Article  Google Scholar 

  • Zhou GY, Wei XH, Luo Y, et al. (2010) Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resources Research 46(9): W09503. DOI: 10.1029/2009WR008829

    Article  Google Scholar 

  • Zhu Q, Jiang H, Peng C, et al. (2011) Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China. Ecological Modelling 222(14): 2414–2429. DOI: 10.1016/j.ecolmodel.2010.09.035

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (No. 41401044 and No. 41310013), the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006), the Chinese Academy of Science (‘West Star’ project), and the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen-xu Wang.

Additional information

http://orcid.org/0000-0003-4385-3479

http://orcid.org/000-0002-3403-0983

http://orcid.org/0000-0003-0915-018X

http://orcid.org/0000-0003-0409-5126

http://orcid.org/0000-0003-3627-2350

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Xy., Wang, Gx., Huang, M. et al. Effect of climate change on seasonal water use efficiency in subalpine Abies fabri . J. Mt. Sci. 14, 142–157 (2017). https://doi.org/10.1007/s11629-016-3867-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3867-9

Keywords

Navigation