Skip to main content
Log in

Spatio-temporal variation of spring phenology in Tibetan Plateau and its linkage to climate change from 1982 to 2012

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The influence of climate change on vegetation phenology is a heated issue in current climate change study. We used GIMMS-3g NDVI data to detect the spatio-temporal dynamics of the start of the growing season (SGS) over the Tibetan Plateau (TP) from 1982 to 2012 and to analyze its relationship with temperature and precipitation. No significant trend was observed in the SGS at the regional scale during the study period (R 2 = 0.03, P = 0.352). However, there were three time periods (1982-1999, 1999-2008 and 2008-2012) with identifiable, distinctly different trends. Regions with a significant advancing trend were mainly scattered throughout the humid and semi-humid areas, whereas the regions with a significant delaying trend were mostly distributed throughout the semi-arid areas. Statistical analysis showed that the response of the SGS to climate change varies spatially. The SGS was significantly correlated with the spring temperature and the start of the thermal growth season (STGS) in the relatively humid area. With increasing aridity, the importance of the spring temperature for the SGS gradually decreased. However, the influences of precipitation and winter temperature on the SGS were complicated across the plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badeck FW, Bondeau A, Bottcher K, et al. (2004) Responses of spring phenology to climate change. New Phytologist 162(2): 295–309. DOI: 10.1111/j.1469-8137.2004.01059.x

    Article  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, et al. (2006) Climate change and population declines in a long-distance migratory bird. Nature 441(7089): 81–83. DOI: 10.1038/nature04539

    Article  Google Scholar 

  • Chen J, Jonsson P, Tamura M, et al. (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment 91(3-4): 332–344. DOI: 10.1016/j.rse.2004.03. 014

    Article  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, et al. (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology 11(10): 1777–1787. DOI: 10.1111/j.1365-2486.2005.001012.x

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, et al. (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America 103(37): 13740–13744. DOI:10.1073/pnas.0600815103

    Article  Google Scholar 

  • Cong N, Piao SL, Chen AP, et al. (2012) Spring vegetation greenup date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology 165: 104–113. DOI:10.1016/j.agrformet.2012.06.009

    Article  Google Scholar 

  • Cong N, Wang T, Nan HJ, et al. (2013) Changes in satellitederived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob Chang Biol 19(3): 881–891. DOI:10.1111/gcb.12077

    Article  Google Scholar 

  • Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America 109(23): 9000–9005. DOI:10.1073/pnas.1118364109

    Article  Google Scholar 

  • Deng SF, Yang TB, Zeng B, et al. (2013) Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000-2011. Journal of Mountain Science 10(6): 1050–1062. DOI: 10.1007/s11629-013-2558-z

    Article  Google Scholar 

  • Ding MJ, Li LH, Zhang YL, et al. (2014) Temperature Change and Its Elevation Dependency on the Tibetan Plateau and Its Vicinity from 1971 to 2012. Resources Science 36(7): 1509–1518. (In Chinese)

    Google Scholar 

  • Ding MJ, Li LH, Zhang YL, et al. (2015) Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences 25(2): 131–148. DOI:10.1007/s11442-015-1158-y

    Article  Google Scholar 

  • Ding MJ, Zhang YL, Sun XM, et al. (2013) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin 58(3): 396–405. DOI: 10.1007/s11434-012-5407-5

    Article  Google Scholar 

  • Dong MY, Jiang Y, Zheng C, et al. (2012) Trends in the thermal growing season throughout the Tibetan Plateau during 1960-2009. Agricultural and Forest Meteorology 166: 201–206. DOI: 10.1016/j.agrformet.2012.07.013

    Article  Google Scholar 

  • Fan J, Huang J, Zhang M (2013) Retrieval of Cropping Index in China Using Time Series of SPOT Vegetation NDVI. Sensor Letters 11(6): 1134–1140. DOI: 10.1166/sl.2013.2892

    Article  Google Scholar 

  • Fu Y, Zhang H, Dong W, et al. (2014) Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere. PlOS ONE 9(10): e109544. DOI: 10.1371/journal.pone.0109544

    Article  Google Scholar 

  • Gao L, Hao L, Chen XW (2014) Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau. Journal of Mountain Science 11(5): 1154–1168. DOI: 10.1007/s11629-014-3013-5

    Article  Google Scholar 

  • Hmimina G, Dufrêne E, Pontailler JY, et al. (2013) Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment 132: 145–158. DOI: 10.1016/j.rse.2013.01.010

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing 7(11): 1417–1434. DOI: 10.1080/01431168608948945

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, et al. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1-2): 195–213. DOI: 10.1016/s0034-4257(02)00096-2

    Article  Google Scholar 

  • Jin, ZN, Zhuang QL, He JS, et al. (2013) Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based s-oil physical model and remote sensing data. Climatic Change 119(2): 435–449. DOI: 10.1007/s10584-013-0722-7.

    Article  Google Scholar 

  • Kathuroju N, White MA, Symanzik J, et al. (2007) On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecological Modelling 201(2): 144–156. DOI: 10.1016/j. ecolmodel.2006.09.011

    Article  Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agricultural and Forest Meteorology 137(1-2): 1–14. DOI:10.1016/j.agrformet.2006.03.006

    Article  Google Scholar 

  • Linderholm HW, Walther A, Chen D (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Climatic Change 87(3-4): 405–419. DOI: 10.1007/s10584-007-9327-3

    Article  Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20(14): 1729–1742. DOI: 10.1002/1097-0088 (20001130)20:14<1729:aid-joc556>3.0.co;2-y

    Article  Google Scholar 

  • Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. International Journal of Remote Sensing 25(1): 9–14. DOI: 10.1080/0143116031000115265

    Article  Google Scholar 

  • Memmott J, Craze PG, Waser NM, et al. (2007) Global warming and the disruption of plant-pollinator interactions. Ecology Letters 10(8): 710–717. DOI: 10.1111/j.1461-0248.2007.01061.x

    Article  Google Scholar 

  • Meroni M, Verstraete MM, Rembold F, et al. (2014) A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. International Journal of Remote Sensing 35(7): 2472–2492. DOI: 10.1080/01431161.2014.883090

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, et al. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626): 698–702. DOI: 10.1038/386698a0

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37–42. DOI: 10.1038/nature01286

    Article  Google Scholar 

  • Penuelas J, Filella I, Zhang XY, et al. (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist 161(3): 837–846. DOI: 10.1111/j.1469-8137.2004.01003.x

    Article  Google Scholar 

  • Penuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324(5929): 887–888. DOI: 10.1126/science.1173004

    Article  Google Scholar 

  • Piao SL, Cui MD, Chen AP, et al. (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 151(12): 1599–1608. DOI: 10.1016/j.agrformet.2011.06.016

    Article  Google Scholar 

  • Piao SL, Fang JY, He JS (2006a) Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change 74(1-3): 253–267. DOI: 10.1007/s10584-005-6339-8

    Article  Google Scholar 

  • Piao SL, Fang JY, Zhou LM, et al. (2006b) Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology 12(4): 672–685. DOI: 10.1111/j.1365-2486.2006.01123.x

    Article  Google Scholar 

  • Piao SL, Tan JG, Chen AP, et al. (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications 6. DOI: 10.1038/ncomms7911.

  • Rembold F, Atzberger C, Savin I, et al. (2013) Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sensing 5(4): 1704–1733. DOI: 10.3390/rs5041704

    Article  Google Scholar 

  • Robeson SM (2002) Increasing growing-season length in Illinois during the 20th century. Climatic Change 52(1-2): 219–238. DOI: 10.1023/a:1013088011223

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, et al. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193): 353–357. DOI: 10.1038/nature06937

    Article  Google Scholar 

  • Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. International Journal of Climatology 30(11): 1614–1626. DOI: 10.1002/joc.2008

    Article  Google Scholar 

  • Seghieri J, Vescovo A, Padel K, et al. (2009) Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient. Journal of Hydrology 375(1-2): 78–89. DOI: 10.1016/j.jhydrol.2009.01.023

    Article  Google Scholar 

  • Shen MG (2011) Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 108(19): E91–E92. DOI: 10.1073/pnas.1018390108

    Article  Google Scholar 

  • Shen MG, Sun ZZ, Wang SP, et al. (2013) No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences of the United States of America 110(26): E2329–E2329. DOI: 10.1073/pnas.1304625110

    Article  Google Scholar 

  • Shen MG, Tang YH, Chen J, et al. (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology 151(12): 1711–1722. DOI: 10.1016/j.agrformet.2011.07.003

    Article  Google Scholar 

  • Sherry RA, Zhou XH, Gu SL, et al. (2007) Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America 104(1): 198–202. DOI: 10.1073/pnas.0605642104

    Article  Google Scholar 

  • Song CQ, You SC, Ke LH, et al. (2011) Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology 35(8): 853–863. (In Chinese)

    Article  Google Scholar 

  • Sun HL, Zheng D, Yao TD, et al. (2012) Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica 67(1): 3–12. (In Chinese)

    Google Scholar 

  • Tao J, Zhang Y, Zhu J, et al. (2013) Elevation-dependent temperature change in the Qinghai–Xizang Plateau grassland during the past decade. Theoretical and Applied Climatology 117(1): 61–71. DOI: 10.1007/s00704-013-0976-z

    Google Scholar 

  • Tang YH, Wan SQ, He JS, et al. (2009) Foreword to the special issue: looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology 2(4): 169–171. DOI: 10.1093/jpe/rtp026

    Article  Google Scholar 

  • Walther A, Linderholm HW (2006) A comparison of growing season indices for the Greater Baltic Area. International Journal of Biometeorology 51(2): 107–118. DOI: 10.1007/s00484-006-0048-5

    Article  Google Scholar 

  • Walther GR (2003) Plants in a warmer world. Perspectives in Plant Ecology Evolution and Systematics 6(3): 169–185. DOI: 10.1078/1433-8319-00076

    Article  Google Scholar 

  • White MA, de Beurs KM, Didan K, et al. (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology 15(10): 2335–2359. DOI: 10.1111/j.1365-2486.2009.01910.x

    Article  Google Scholar 

  • White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology 42: 139–145. DOI: 10.1007/s004840050097

    Article  Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles 11(2): 217–234. DOI: 10.1029/97gb00330

    Article  Google Scholar 

  • Yu HY, Luedeling E, Xu JC (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 107(51): 22151–22156. DOI: 10.1073/pnas.1012490107

    Article  Google Scholar 

  • Zhang XY, Friedl MA, Schaaf CB (2009) Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. International Journal of Remote Sensing 30(8): 2061–2074. DOI:10.1080/01431160802549237

    Article  Google Scholar 

  • Zhang XY, Friedl MA, Schaaf CB, et al. (2003) Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84(3): 471–475. DOI: 10.1016/s0034-4257(02)00135-9

    Article  Google Scholar 

  • Zhang XY, Friedl MA, Schaaf CB, et al. (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. Journal of Geophysical Research-Atmospheres 110(D12): 10.1029/2004jd005263. DOI: 10.1029/2004jd005263

    Google Scholar 

  • Zhang YL, Li BY, Zheng D (2002) A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research 21(1): 1–8. (In Chinese)

    Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Procee-dings of the National Academy of Sciences of the United States of America 110(11): 4309–4314. DOI: 10.1073/pnas.1210423110.

    Article  Google Scholar 

  • Zhou HK, Yao BQ, Xu WX, et al. (2014) Field Evidence for Earlier Leaf-Out Dates in Alpine Grassland On the Eastern Tibetan Plateau From 1990 to 2006. Biology Letters. 10(201402918). DOI: 10.1098/rsbl.2014.0291

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-li Zhang.

Additional information

http://orcid.org/0000-0002-9623-8886

http://orcid.org/0000-0002-5927-6891

http://orcid.org/0000-0002-6075-8564

http://orcid.org/0000-0002-9696-5813

http://orcid.org/0000-0002-9474-1664

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Mj., Li, Lh., Nie, Y. et al. Spatio-temporal variation of spring phenology in Tibetan Plateau and its linkage to climate change from 1982 to 2012. J. Mt. Sci. 13, 83–94 (2016). https://doi.org/10.1007/s11629-015-3600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3600-0

Keywords

Navigation