Skip to main content
Log in

Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

An understanding of variations in vegetation cover in response to climate change is critical for predicting and managing future terrestrial ecosystem dynamics. Because scientists anticipate that mountain ecosystems will be more sensitive to future climate change compared to others, our objectives were to investigate the impacts of climate change on variation in vegetation cover in the Qilian Mountains (QLM), China, between 2000 and 2011. To accomplish this, we used linear regression techniques on 250-m MODIS Normalized Difference Vegetation Index (NDVI) datasets and meteorological records to determine spatiotemporal variability in vegetation cover and climatic factors (i.e. temperature and precipitation). Our results showed that temperatures and precipitation have increased in this region during our study period. In addition, we found that growing season mean NDVI was mainly distributed in the vertical zone from 2,700 m to 3,600 m in elevation. In the study region, we observed significant positive and negative trends in vegetation cover in 26.71% and 2.27% of the vegetated areas. Correlation analyses indicated that rising precipitation from May to August was responsible for increased vegetation cover in areas with positive trends in growing season mean NDVI. However, there was no similar significant correlation between growing season mean NDVI and precipitation in regions where vegetation cover declined throughout our study period. Using spatial statistics, we found that vegetation cover frequently declined in areas within the 2,500–3,100 m vertical zone, where it has steep slope, and is on the sunny side of mountains. Here, the positive influences of increasing precipitation could not offset the drier conditions that occurred through warming trends. In contrast, in higher elevation zones (3,900–4,500 m) on the shaded side of the mountains, rising temperatures and increasing precipitation improved conditions for vegetation growth. Increased precipitation also facilitated vegetation growth in areas experiencing warming trends at lower elevations (2,000–2,400 m) and on lower slopes where water was more easily conserved. We suggest that spatial differences in variation in vegetation as the result of climate change depend on local moisture and thermal conditions, which are mainly controlled by topography (e.g. elevation, aspect, and slope), and other factors, such as local hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RG, Goulden ML (2011) Relationships between climate, vegetation, and energy exchange across a montane gradient. Journal of Geophysical Research 116(G01026): 1–16. DOI: 10.1029/2010JG001476.

    Google Scholar 

  • Angert A, Biraud S, Bonfils C, et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America 102(31): 10823–10827. DOI: 10.1073/pnas.0501647102.

    Article  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668–673. DOI: 10.1038/35015049.

    Article  Google Scholar 

  • Barford CC, Wofsy SC, Goulden ML, et al. (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294: 1688–1691. DOI: 10.1126/science.1062962.

    Article  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: An overview. Climatic Change 36: 233–251. DOI: 10.1023/A:1005380714349.

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, et al. (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678–682. DOI: 10.1038/35596.

    Article  Google Scholar 

  • Ding MJ, Zhang YL, Sun XM, et al. (2012) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin 58(3): 396–405. DOI: 10.1007/s11434-012-5407-5.

    Article  Google Scholar 

  • Eklundha L, Jönssonb P (2010) TIMESAT 3.0: Software Manual (pp. 28–30). Sweden: Malmö and Lund.

    Google Scholar 

  • Fagre DB, Peterson DL, Hessl AE (2003) Taking the pulse of mountains: Ecosystem responses to climatic variability. Climatic Change 59: 263–282. DOI: 10.1007/978-94-015-1252-7_13.

    Article  Google Scholar 

  • Fang JY, Piao SL, He JS, et al. (2004) Increasing terrestrial vegetation activity in China. Science in China Series C-Life Sciences 47(3): 229–240. DOI: 10.1007/BF03182768.

    Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228: 113–129. DOI: 10.1016/S0022-1694(00)00144-X.

    Article  Google Scholar 

  • Greco S, Moss R, Viner D, et al. (1994) Climate Scenarios and Socioeconomic Projections for IPCC WG II Assessment (Washington, DC: IPCC, IPCC WMO and UNEP).

    Google Scholar 

  • Guo WQ, Yang TB, Dai JG, et al. (2008) Vegetation cover changes and their relationship to climate variation in the source region of the Yellow River, China, 1990–2000. International Journal of Remote Sensing 29(7): 2085–2103. DOI: 10.1080/01431160701395229.

    Article  Google Scholar 

  • Huang KY (2002) Evaluation of the topographic sheltering effects on the spatial pattern of Taiwan fir using aerial photography and GIS. International Journal of Remote Sensing 23(10): 2051–2069. DOI: 10.1080/0143116011007 6207.

    Article  Google Scholar 

  • Hwang T, Song C, Vose JM, et al. (2011) Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape ecology 26: 541–556. DOI: 10.1007/s10980-011-9580-8.

    Article  Google Scholar 

  • Ichii K, Kawabata A, Yamaguchi Y (2002) Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. International Journal of Remote Sensing 23(18): 3873–3878. DOI: 10.1080/01431160110119416.

    Article  Google Scholar 

  • IPCC (2007) Climate change: Fourth assessment report of the intergovernmental panel on climate change: Climate change 2007, Working group I: The Physical Science Basis (pp. 32–33). (Cambridge: Cambridge University Press).

    Google Scholar 

  • Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles 9(2): 227–234. DOI: 10.1029/95GB00321.

    Article  Google Scholar 

  • Jiang YJ, Li SJ, Shen DF, et al. (2012) Climate Change and Its Impact on the Lake Environment in the Tibetan Plateau in 1971–2008. Scientia Geographica Sinica 32(12): 1503–1512. (In Chinese).

    Google Scholar 

  • Jin XM, Wan L, Zhang YK, et al. (2009) Quantification of spatial distribution of vegetation in the Qilian Mountain area with MODIS NDVI. International Journal of Remote Sensing 30(21): 5751–5766. DOI: 10.1080/01431160902736635.

    Article  Google Scholar 

  • Jong RD, Bruin SD, Wit AD, et al. (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment 115(2): 692–702. DOI: 10.1016/j.rse.2010.10.011.

    Article  Google Scholar 

  • Jong RD, Verbesselt J, Schaepman ME, et al. (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology 18(2): 642–655. DOI: 10.1111/j.1365-2486.2011.02578. x.

    Article  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382: 146–149. DOI: 10.1038/382146a0.

    Article  Google Scholar 

  • Kimball BA, Idso SB, Johnson S, et al. (2007) Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Global Change Biology 13(10): 2171–2183. DOI: 10.1111/j.1365-2486.2007.01430.x.

    Article  Google Scholar 

  • Kraaij T, Milton SJ (2006) Vegetation changes (1995–2004) in semi-arid Karoo shrubland, South Africa: Effects of rainfall, wild herbivores and change in land use. Journal of Arid Environments 64: 174–192. DOI: 10.1016/j.jaridenv.2005.04. 009.

    Article  Google Scholar 

  • Leemans R, Zuidema G (1995) Evaluating changes in land cover and their importance for global change. Trends in Ecology and Evolution 10(2): 76–81. DOI: 10.1016/S0169-5347(00)88981-8.

    Article  Google Scholar 

  • Linderholm HW, Walther A, Chen DL (2008) Twentiethcentury trends in the thermal growing season in the Greater Baltic Area. Climatic Change 87(3–4): 405–419. DOI: 10.1007/s10584-007-9327-3.

    Article  Google Scholar 

  • Lioubimtseva E, Cole R, Adams JM, et al. (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments 62: 285–308. DOI: 10.1016/j.jaridenv.2004.11.005.

    Article  Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during decades. International Journal of Climatology 20: 1729–1942. DOI: 10.1002/1097-0088(20001130)20:14 〈1729::AID-JOC556〉3.0.CO;2-Y.

    Article  Google Scholar 

  • Los SO, Collatz GJ, Bounoua L, et al. (2001) Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. Journal of Climate 14: 1535–1549. DOI: 10.1175/1520-0442(2001)014〈1535:GIVISS〉2.0.CO;2.

    Article  Google Scholar 

  • Lotsch A, Friedl MA, Anderson BT, et al. (2005) Response of terrestrial ecosystems to recent northern hemispheric drought. Geophysical Research Letters 32(L06705): 1–5. DOI: 10.1029/2004GL022043.

    Google Scholar 

  • Ma MG, Frank V (2006a) Interannual variability of vegetation cover in the Chinese Heihe River Basin and its relation to meteorological parameters. International Journal of Remote Sensing 27(16): 3473–3486. DOI: 10.1080/01431160600 593031.

    Article  Google Scholar 

  • Ma MG, Frank V (2006b) Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Advances in Space Research 2006(37): 835–840. DOI: 10.1016/j.asr.2005.08.037.

    Article  Google Scholar 

  • Mabutt JA (1989) Impacts of carbon dioxide warming on climate and man in the semiarid tropics. Climatic Change 15: 191–221. DOI: 10.1007/BF00138852.

    Article  Google Scholar 

  • Messerli B, Viviroli D, Weingartner R (2004) Mountains of the world: Vulnerable water towers for the 21st century. Ambio 13: 29–34.

    Google Scholar 

  • MODIS Reprojection Tool (MRT) (2006) User’s Manual. Release 3.3a. Department of mathematics and computer science, south Dakota School of mines and technology, Land processes DAAC USGS center for earth resource observation and science (EROS) (pp. 32–47).

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, et al. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698–702. DOI: 10.1038/386698a0.

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, et al. (2003) Climatedriven increases in global terrestrial Net primary production from 1982 to 1999. Science 300: 1560–1563. DOI: 10.1126/science.1082750.

    Article  Google Scholar 

  • Notaro M, Vavrus S, Liu Z (2007) Global Vegetation and Climate Change due to Future Increases in CO2 as Projected by a Fully Coupled Model with Dynamic Vegetation. Journal of Climate 20: 70–90. DOI: 10.1175/JCLI3989.1.

    Article  Google Scholar 

  • Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel-trends, patterns and potential causes. Journal of Arid Environments 63: 556–566. DOI: 10.1016/j.jaridenv.2005. 03.008.

    Article  Google Scholar 

  • Park H-S, Sohn BJ (2010) Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. Journal of Geophysical Research 115(D14101): 1–12. DOI: 10.1029/2009JD012752.

    Google Scholar 

  • Piao SL, Ciais P, Friedlingstein P, et al. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 49–53. DOI: 10.1038/nature06444.

    Article  Google Scholar 

  • Piao SL, Ciais P, Huang Y, et al. (2010) The impacts of climate change on water resources and agriculture in China. Nature 467: 43–51. DOI: 1038/nature09364.

    Article  Google Scholar 

  • Piao SL, Cui MD, Chen AP, et al. (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 151: 1599–1608. DOI: 10.1016/j.agrformet.2011.06.016.

    Article  Google Scholar 

  • Piao SL, Fang JY, He JS (2006) Variations in vegetation Net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change 74: 253–267. DOI: 10.1007/s10584-005-6339-8.

    Article  Google Scholar 

  • Piao SL, Fang JY, Ji W, et al. (2004) Variation in a satellitebased vegetation index in relation to climate in China. Journal of Vegetation Science 15: 219–226. DOI: 10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2.

    Article  Google Scholar 

  • Pielke RA, Avissar R, Raupach M, et al. (1998) Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology 4: 461–475. DOI: 10.1046/j.1365-2486.1998.t01-1-00176.x.

    Article  Google Scholar 

  • Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis. (New York: Springer-Verlag).

    Book  Google Scholar 

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial Net primary production from remotely sensed Data. Journal of Geophysical Research 99(D3): 5263–5283. DOI: 10.1029/93JD03221.

    Article  Google Scholar 

  • Running SW, Nemani RR (1988) Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment 24(2): 347–367. DOI: 10.1016/0034-4257(88)90034-X.

    Article  Google Scholar 

  • Shen MG, Tang YH, Chen J, et al. (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology 151: 1711–1722. DOI: 10.1016/j.agrformet.2011.07.003.

    Article  Google Scholar 

  • Sobrino JA, Julien Y (2011) Global trends in NDVI-derived parameters obtained from GIMMS data. International Journal of Remote Sensing 32(15): 4267–4279. DOI: 10.1080/01431161.2010.486414.

    Article  Google Scholar 

  • The Web sites for the reports from National Aeronautics and Space Administration (NASA). Available online: http://www.nasa.gov/topics/earth/features/2011-temps.html.

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2): 127–150. DOI: 10.1016/0034-4257(79) 90013-0.

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. International Journal of Remote Sensing 7(11): 1395–1416. DOI: 10.1080/01431168608948944.

    Article  Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, et al. (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International journal of biometeorology 45: 184–190. DOI: 10.1007/s00484-001-0109-8.

    Article  Google Scholar 

  • Wang WL, Anderson BT, Phillips N, et al (2006) Feedbacks of vegetation on summertime climate variability over the North American grasslands. Part I: Statistical analysis. Earth Interactions 10: 1–27. DOI: 10.1175/EI197.1.

    Google Scholar 

  • Wang XH, Piao SL, Ciais P, et al. (2011) Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America 108(4): 1240–1245. DOI: 10.1073/pnas.1014425108.

    Article  Google Scholar 

  • White AB, Kumar P, Tcheng D (2005) A data mining approach for understanding topographic control on climate-induced inter-annual vegetation variability over the United States. Remote Sensing of Environment 98(1): 1–20. DOI: 10.1016/j.rse.2005.05.017.

    Article  Google Scholar 

  • Xu XK, Chen H, Levy JK (2008) Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chinese Science Bulletin 53(6): 915–922. DOI: 10.1007/s11434-008-0115-x.

    Article  Google Scholar 

  • Yao TD, Liu XD, Wang NL, et al. (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chinese Science Bulletin 45(13):1236–1243. DOI: 10.1007/BF02886087.

    Article  Google Scholar 

  • Yu F, Price KP, Ellis J, et al. (2003) Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sensing of Environment 87: 42–54. DOI: 10.1016/S0034-4257(03)00144-5.

    Article  Google Scholar 

  • Yu F, Price KP, Ellis J, et al. (2004) Interannual variations of the grassland boundaries bordering the eastern edges of the Gobi Desert in central Asia. International Journal of Remote Sensing 25(2): 327–346. DOI: 10.1080/01431160310000 84297.

    Article  Google Scholar 

  • Yu HY, Luedeling E, Xua JC (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 107(51): 22151–22156. DOI: 10.1073/pnas.1012490107.

    Article  Google Scholar 

  • Zeng B, Yang TB (2008) Impacts of climate warming on vegetation in Qaidam area from 1990 to 2003. Environmental Monitoring and Assessment 144: 403–417. DOI: 10.1007/s10661-007-0003-x.

    Article  Google Scholar 

  • Zeng B, Yang TB (2009) Natural vegetation responses to warming climates in Qaidam Basin 1982–2003. International Journal of Remote Sensing 30(21): 5685–5701. DOI: 10.1080/01431160902729556.

    Article  Google Scholar 

  • Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial Net primary production from 2000 through 2009. Science 329: 940–943. DOI: 10.1126/science.1192666.

    Article  Google Scholar 

  • Zhou DW, Fan GZ, Huang RH, et al. (2007) Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change. Advances in Atmospheric Sciences 24(3): 474–484. DOI: 10.1007/s00376-007-0474-2.

    Article  Google Scholar 

  • Zhou LM, Tucker CJ, Kaufmann RK, et al. (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research 106(D17): 20069–20083. DOI: 10.1029/2000JD000115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-bao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Sf., Yang, Tb., Zeng, B. et al. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 10, 1050–1062 (2013). https://doi.org/10.1007/s11629-013-2558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-013-2558-z

Keywords

Navigation