Skip to main content
Log in

Morphological and physiological responses of tara (Caesalpinia spinosa (Mol.) O. Kuntz) microshoots to ventilation and sucrose treatments

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

One of the main problems of in vitro plant tissue culture is the poor ventilation in the culture vessels. This leads to morphological and physiological anomalies in regenerated in vitro plants, a crucial issue in woody species, such as Caesalpinia spinosa (Mol.) O. Kuntz, which is a legominous tree or thorny shrub of the Andes, adequate photoautotrophic and photomixotrophic in vitro rooting systems could eliminate these problems. Therefore, the purpose of the present study was to evaluate photoautotrophic and photomixotrophic treatments to optimize the in vitro rooting of C. spinosa microshoots. Micropropagated shoots were cultured in vessels sealed with a polypropylene lid with 0, 1, or 3 ventilation holes covered with a 0.45-μm adhesive polypropylene microfilter. The vessels contained MS salts with or without 30 g L−1 sucrose or, alternatively, a porous substrate (PRO-MIX®), which facilitated rooting and produced greater fresh and dry weights, a higher concentration of photosynthetic pigments and phenolic compounds, and more developed leaves. The optimal performance and higher survival was obtained by using PRO-MIX® with three filters for increased ventilation. For treatments in agar, only the one with sucrose and highly ventilated (three filters) reached a performance approaching that with PRO-MIX®. To date, the presented results have not been reported in scientific literature for C. spinosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Afreen-Zobayed F, Zobayed SMA, Kubota C, Kozai T, Hasegawa O (2000) A combination of vermiculite and paper pulp supporting material for the photoautotrophic micropropagation of sweet potato. Plant Sci 157:225–231

    Article  CAS  Google Scholar 

  • Alvarez C, Sáez P, Sáez K (2012) Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana mol. Plant Cell Tiss Org Cult 110:93–101. https://doi.org/10.1007/s11240-012-0133-x

  • Aubé M, Quenum M, Ranasinghe LL (2015) Characteristics of Eastern Canadian cultivated Sphagnum and potential use as a substitute for perlite and vermiculite in peat – based horticultural substrates. Mires Peat 15:1–18

    Google Scholar 

  • Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tiss Org Cult 107:13–24

  • Balaguer L, Arroyo R, Jiménez P, Jiménez MD, Villegas L, Cordero I, Rubio de Casas R, Fernández R, Ron ME, Manrique E, Vargas P, Cano E, Pueyo JJ, Aronson J (2011) Forest restoration in a fog oasis: evidence indicates need for cultural awareness in constructing the reference. PLoS One 6:1–10. https://doi.org/10.1371/Journal.pone.0023004

    Article  Google Scholar 

  • Cartaya O, Reynaldo I (2001) Flavonoides: Caracteristicas química y aplicaciones, Cultivos Tropicales. Instituto Nacional de Ciencias Agrícolas La Habana, Cuba 22:5–14

    Google Scholar 

  • De Klerk GJ, Guan H, Huisman P, Marinova S (2011) Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul 63:175–185

    Article  CAS  Google Scholar 

  • Deccetti SF (2008) Effect of the culture environment on stomatal features, epidermal cells and water loss of micropropagated Annona glabra L. plants. Sci Hortic 117:341–344

    Article  Google Scholar 

  • Denaxa N, Roussos PA, Vemmos SN (2019) Assigning a role to the endogenous phenolic compounds on adventitious root formation of olive stem cuttings. J Plant Growth Regul 39:411–421

  • Dias MC, Pinto G, Correia CM, Moutinho-Pereira J, Silva S, & Santos C (2013) Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biologia plantarum, 57(1), 33-40.

    Article  CAS  Google Scholar 

  • Faisal M, Siddique I, Anis M (2007) An efficient plan regeneration system for Mucuna purence L. (DC) using cotyledonary node explants. In Vitro Cell Dev Biol - Plant 42:59–64

  • Fuentes G, Talavera C, Oropeza C, Desjardins Y, Santamaría JM (2005) Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Biol - Plant 41:69–76

  • Fujiwara K, Kozai T (1995) Physical microenvironment and its effects. In: Aitken-Christie J, Kozai T, MAL S (eds) Automation and environmental control in plant tissue culture. Springer Publishers, Dordrecht, pp 319–369

    Chapter  Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    Article  CAS  Google Scholar 

  • Grace SC (2005) Phenolics and antoxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing LTD, Oxford, pp 141–168

  • Grout BWW, Donkin ME (1987) Photosynthetic activity of cauliflower meristem cultures in vitro and at transplanting into soil. Acta Hortic 34:323–328

    Article  Google Scholar 

  • Hazarika B (2003) Acclimatization of tissue-cultured plants. Curr Sci India 85:1704–1712

    CAS  Google Scholar 

  • Hazarika B (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Hoang NN, Kitaya Y, Morishita T, Endo R, Shibuya T (2017) A comparative study on growth and morphology of wasabi plantlets under the influence of the micro-evironment in shoot and root zones during photoautotrophic and photomixotrophic micropropagation. Plant Cell Tiss Org Cult 130:405–416

    Article  Google Scholar 

  • Iarema L, Da Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, De Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseg [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:227–238

  • Imbrogno LP (2007) Elongación in vitro y enraizamiento ex vitro de brotes de Pinus taeda L. MSc. Thesis. UCLV-UNM. p 77

  • Jo EA, Tewari RK, Hahn EJ, Paek KY (2009) In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell Tiss Org Cult 96:307–315. https://doi.org/10.1007/s11240-008-9488-4

  • Khan PSV, Kozai T, Nguyen QT, Kubota C, Dhawan V (2002) Growth and net photosynthesis rates of Eucalyptus tereticornis Smith under photomixotrophic and various photoautotrophic micropropagation conditions. Plant Cell Tiss Org Cult 71:141–146

  • Khan PSV, Kosai T, Nguyen QT, Kubota C, Dhawan V (2003) Growth and water relations of Paulownia fortunei under photomixotrophic an photoautotrophic conditions. Biol Plant 46:161–166

    Article  CAS  Google Scholar 

  • Kirca A, Arslan E (2008) Antioxidant capacity and total phenolic content of selected plants from Turkey. Int J Food Sci Technol 43:2038–2046

    Article  CAS  Google Scholar 

  • Kitaya Y, Ohmura Y, Kubota C, Kozai T (2005) Air movement and photosynthesis in micropropagation. Plant Cell Tiss Org Cult 83:251–257

    Article  CAS  Google Scholar 

  • Kozai T (2010) Photoautotrophic micropropagation-environmental control for promoting photosynthesis. Propag Ornam Plant 10:88–97

    Google Scholar 

  • Kozai T, Xiao Y, Nguyen QT, Afreen F, Zobayed SMA (2005) Photoautotrophic (sugar-free medium) micropropagation system for large-scale commercialization. Propag Ornam Plant 5:23–34

    Google Scholar 

  • Kozai T, Zobayed SMA (2000) Acclimatization. In: Spier R (ed) Encyclopedia of cell technology. John Wiley & Sons, Inc., New York, pp 1–12

    Google Scholar 

  • Kubota C (2002) Photoautotrophic micropropagation: importance of controlled environment in plan tissue culture. Comb Proc Int Plant Propag Soc 52:906–913

    Google Scholar 

  • Lian M, Murthy H, Paek K (2002) Culture method and photosynthetic photon flux affect photosynthesis growth and survival of Limonium “Misty Blue” in vitro. Sci Hortic 95:239–249

    Article  CAS  Google Scholar 

  • Licea-Moreno RJ, Contreras A, Morales AV, Urban I, Daquinta M, Gomez L (2015) Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell Tiss Org Cult 123:143–115

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn WR (1983) Determination of carotenoids and chlorophylls ´a´ and ´b’of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Lucchesini M, Mensuali-Sodi A, Weightai R, Gucci R (2001) Development of autotrophy and tolerance to acclimatization of Myrtus communis transplants cultured in vitro under different aeration. Biol Plant 44:167–174

    Article  Google Scholar 

  • Mancero L (2008) La Tara (Caesalpinia spinosa) en Perú, Bolivia y Ecuador: Análisis de la Cadena Productiva en la Región. Programa Regional ECOBONA-INTERCOOPERATION, Quito, pp 27–36

    Google Scholar 

  • Martins JPR, Verdoodt V, Pasqual M, De Proft M (2015) Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrine (Bromeliaceae). Plant Cell Tiss Org Cult 123:121–132. https://doi.org/10.1007/s11240-015-0820-5

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nguyen QT, Kozai T (2001) Photoautotrophic micropropagation of tropical and subtropical woody plants. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science B.V., Amsterdams, pp 335–344

    Google Scholar 

  • Nieto C, Hidrobo G (2011) La cadena agro-productiva del Tara (Caesalpinia spinosa Kunze), elementos que resaltan su competitividad. Fundación Desde el Surco. SENESCYT, Quito, p 46

    Google Scholar 

  • Norikate A, Takamura T, Morokuma M, Tanaka M (2010) In vitro growth and single-leaf photosynthetic response of Cymbidium plantlets to super-elevated CO2 under cold cathode fluorescent lamps. Plant Cell Rep 29:273–283

    Article  Google Scholar 

  • Osório ML, Goncalves S, Osório J, Romano A (2005) Effects of CO2 concentration on acclimatization and physiological responses of two cultivars of carob tree. Biol Plant 54:415–422

    Article  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  Google Scholar 

  • Posada L (2016) Embriogénesis somática y enraizamiento in vitro fotoautotrófico en papaya (Carica papaya L.) cultivar 'Maradol Roja'. Ph.D. Thesis, Santa Clara, Cuba, pp 100

  • Posada L, Padrón Y, Gonzáles J, Barbón R, Rodríguez R, Norman O, Hurtado O, Daniels D, Gómez R (2015) Effect of different culture conditions (photoautotrophic, photomixotrophic) and the auxin índole-butyric acid on the in vitro aclimatization of papaya (Carica papaya L. var. Maradol Roja) plants using zeolite as support. African J Biotech 14:2622–2635

    Article  Google Scholar 

  • Rodrigues J, Verdoodt V, Pasqual M, De Proft M (2016) Physiological responses by Billbergia zebrina (Bromeliaceae) when grown under controlled microenvironmental conditions. African J Biotech 15:1952–1961. https://doi.org/10.5897/AJB2016.15584

    Article  Google Scholar 

  • Rodríguez A, Apolinario B (2015) Estudio de factibilidad para la implementación de una finca productora de Tara (Caesalpinia spinosa) en el sector San Guillermo, Imbabura, Ecuador (Bhc. Thesis) Universidad Salesiana, Quito. 135pp [En línea] En: http://dspace.ups.edu.ec/handle/123456789/9830 [Consultado:10 diciembre 2016]

  • Rojas O, Rojas N, Díaz P (2007) La tara y condiciones de reforestación en el Alto Jequetepeque, Microcuenca de San Juan-Cajamarca. Industrial Data 10:38–46

    Article  Google Scholar 

  • Romero CA (2017) ABC de la producción y comercio de Tara en el Perú. Perfil Técnico No.1 Ministerio de Agricultura y Riego, Dirección General de Políticas Agrarias. Lima – Perú, p 6

  • Saéz PL, Bravo LA, Latsague MI, Sánchez ME, Ríos DG (2012) Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Sci Hortic 138:7–16

    Article  Google Scholar 

  • Sánchez MMR (2009) Evaluación de medios de cultivo en la reproducción in vitro de Laelia anceps. Tesis Maestría, Colegio de Postgraduados, Montecillo, México, p 92

  • Santamaría E, Toorop P, Rodríguez R, Cañal MJ (2010) Dormant and non – dormant Castanea Sativa Mill buds require different polyvinylpyrrolidone concentrations for optimal RNA isolation. Plant Sci 178:55–60

    Article  Google Scholar 

  • Seon J, Cui Y, Kozai T, Paek K (2000) Influence of in vitro growth conditions on photosynthetic competence and survival ration of Rehmannia glutinosa plantlets during acclimatization period. Plant Cell Tiss Org Cult 64:135–142

  • Shim SW, Hahn EJ, Paek KY (2003) In vitro and ex vitro growth of grapevine rootstock ‘5BB’ as influenced by number of air exchanges and the presence or absence of sucrose in culture media. Plant Cell Tiss Org Cult 75:57–62

  • Shin KS, Park SY, Paek KY (2013) Sugar metabolism, photosynthesis, and growth of in vitro plantlets of Doritaenopsis under controlled microenvironmental conditions. In Vitro Cell Dev Biol - Plant 49:445–454. https://doi.org/10.1007/s11627-013-9524-x

  • Sigma-Aldrich (2008) www.sigmaaldrich.com/catalog/product/sigma/p2008

  • Spanos GA, Wrolstad RE (1990) Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J Agric Food Chem 38:1565–1571

    Article  CAS  Google Scholar 

  • Tadesse M, Lommen WJM, Struik PC (2000) Effects of in vitro treatments on leaf area growth of potato transplants during acclimatization. Plant Cell Tiss Org Cult 61:59–67

  • Tsay HS, Lee CY, Agrawal DC, Basker S (2006) Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in Scrophularia yoshimurae a medicinal plant. In Vitro Cell Dev Biol Plant 42:445–449. https://doi.org/10.1079/IVP2006791

  • Villanueva C (2007) La Tara, El oro verde de los Incas. Lima. Ed. AGRUM. 1° edición. Universidad Nacional Agraria La Molina, pp 163–167

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult 105:149–158

  • Xiao Y, Zhang Y, Dang K, Wang D (2007) Growth and photosynthesis of Dendrobium candidum plantlets cultured photoautotrophically. Propag Ornam Plant 7:86–96

    Google Scholar 

  • Zobayed SMA, Afreen F, Kubota C, Kozai T (2000) Weight propagation of Eucalyptus camaldulensis in a scaled-up vessel under in vitro photoautotrophic condition. Ann Bot 85:587–592

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the international scientific network BIOALI-CYTED, which contributed to the presented insights and to establish coauthor contacts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Elizabeth Núñez-Ramos.

Additional information

Editor: David Songstad

Electronic supplementary material

ESM 1

(DOCX 2677 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-Ramos, J.E., Quiala, E., Posada, L. et al. Morphological and physiological responses of tara (Caesalpinia spinosa (Mol.) O. Kuntz) microshoots to ventilation and sucrose treatments. In Vitro Cell.Dev.Biol.-Plant 57, 1–14 (2021). https://doi.org/10.1007/s11627-020-10104-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10104-w

Keywords

Navigation