Skip to main content
Log in

The ‘Golden rice’ tale

  • Turning Point Article
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baur, M.; Potrykus, I.; Paszkowski, J. Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10:492–500; 1990.

    PubMed  CAS  Google Scholar 

  • Brisson, N.; Paszkowski, J.; Penswick, J.; Gronenborn, B.; Potrykus, I.; Hohn, T. Expression of a bactcrial gene in plants using a viral vector. Nature 310:511–514; 1984.

    Article  CAS  Google Scholar 

  • Burkhardt, P. K.; Beyer, P.; Wünn, J.; Klöti, A.; Armstrong, G.; Schledz, M.; von Lintig, J.; Potrykus, I. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 11:1071–1078; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, M.; Krauter, R.; Schachermeyer, G.; Potrykus, I.; Sautter, C. Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnology 18:446–449; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S. K.; Datta, K.; Soltanifar, N.; Donn, G.; Potrykus, I. Herbicide resistant Indica rice plants from Indica breeding line IR72 after PEG-mediated transformation of proteplasts. Plant Mol. Biol. 20:619–629; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S. K.; Peterhans, A.; Datta, K.; Potrykus, I. Genetically engineered fertile Indica-rice plants recovered from protoplasts. Bio/Technology 8:736–740; 1990.

    Article  CAS  Google Scholar 

  • Durand, J.; Potrykus, I.; Donn, G. Plantes issues de protoplasts de Petunia. Z. Pflanzenphysiol 69:24–32; 1973.

    Google Scholar 

  • Fütterer, J.; Rothnie, H. M.; Hohn, T.; Potrykus, I. Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. J. Virol. 71:7984–7989; 1997.

    PubMed  Google Scholar 

  • Guerinot, M. L. The Green Revolution, strikes Gold. Science 287:241–243; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D.; Potrykus, I.; Donn, G.; Durand, J.; Hoffmann, F. Transformation experiments in higher plants: prerequisites for the use of isolated protoplasts. Colloques Internationales CNRS 212:343–351; 1973.

    Google Scholar 

  • Klöti, A.; Henrich, C.; Bieri, S.; He, X.; Chen, G.; Burkhardt, P. K.; Wünn, J.; Lucca, P.; Hohn, T.; Potrykus, I.; Fütterer, J. Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription. Plant Mol. Biol. 40:249–266; 1999.

    Article  PubMed  Google Scholar 

  • Kost, B.; Galli, A.; Potrykus, I.; Neuhaus, G. High efficiency transient and stable transformation by optimized DNA microinjection into N. tabacum protoplasts; J. Exp. Bot. 46:1157–1167; 1995.

    Article  CAS  Google Scholar 

  • Leduc, N.; Iglesias, V. A.; Bilang R.; Gisel, A.; Potrykus, I.; Sautter, C. Gene transfer to inflorescence, and flower meristems using ballistic microtargeting. Sex. Plant Reprod. 7:135–143; 1994.

    Article  Google Scholar 

  • Linn, W.; Datta, K.; Potrykus, L.; Muthukrishnan, S.; Datta, S. K. Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13:686–691; 1995.

    Article  Google Scholar 

  • Lucca, P.; Hurrell, R.; Potrykus, I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. (in press); 2000a

  • Lucca, P.; Ye, X.; Potrykus, I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. (in press); 2000b.

  • Lusardi, M. C.; Neuhaus-Url, G.; Potrykus, I.; Neuhaus, G. An approach towards genetically engineered cell fate mapping in maize using the Le gene as visible marker: transactivation capacity of the Le vectors in differentiated maize cells and microinjection of Le vectors into somatic embryos and shoot apical meristems. Plant J. 5:571–582; 1994.

    PubMed  CAS  Google Scholar 

  • Paszkowski, J.; Baur, M.; Bogucki, A.; Potrykus, I. Gene targeting in plants. EMBO J 7:4021–4026; 1988.

    PubMed  CAS  Google Scholar 

  • Paszkowski, J.; Shillito, R. D.; Saul, M. W.; Mandak, V.; Hohn, T.; Hohn, B.; Potrykus, I. Direct gene transfer to plants. EMBO J. 3:2717–2722; 1984.

    PubMed  CAS  Google Scholar 

  • Peterhans, A.; Datta, S. K.; Datta, K. Goodall G.; Potrykus I.; Paszkowski, J. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Mol. Gen. Genet. 222:361–368; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus, I. Transplantation of chloroplasts into protoplasts of Petunia. Z. Pflanzenphysiol. 70:364–366; 1973.

    Google Scholar 

  • Potrykus, I. Gene transfer to cereals; an assessment. Bio/Technology 8:535–542; 1990.

    Article  CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 42:205–225; 1991.

    Article  CAS  Google Scholar 

  • Potrykus, I.; Harms, C. T.; Lörz, H. Problems in culturing cereal protoplasts. In: Dudits, D. et al., eds. Cell genetics in higher plants. Budapest: Akademiai Kiado; 1976:129–140.

    Google Scholar 

  • Potrykus, I.; Harms, C. T.; Lörz, H. Multiple-drop-array (MDA) technique for the largescale testing of culture media variations in hanging microdrop cultures of single cell systems. I. The technique. Plant Sci. Lett. 14:231–235; 1978.

    Article  Google Scholar 

  • Potrykus, I.; Harms, C. T.; Lörz, H. Callus formation from cell culture protoplasts of corn (Zea mays). Theor. Appl. Genet. 54:209–214; 1979.

    Article  Google Scholar 

  • Potrykus, I.; Harms, C. T.; Lörz, H.; Thomas, E. Callus formation from stem protoplasts of corn (Zea mays L.). Mol. Gen. Genet. 156:347–350; 1977.

    Article  CAS  Google Scholar 

  • Potrykus, I.; Hoffmann, F. Transplantation of nuclei into protoplasts of higher plants. Z. Pflanzenphysiol. 69:287–289; 1973.

    Google Scholar 

  • Potrykus, I.; Saul, M. W.; Petruska, J.; Paszkowski, J.; Shillito, R. D. Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199:183–188; 1985.

    Article  CAS  Google Scholar 

  • Sairam, R. V.; Seetharama, N.; Devi, P. S.; Verma, A.; Murthy, U. R.; Potrykus, I. Culture and regeneration of mesophyll-derived protoplasts of sorghum (Sorghum bicolor (L.) Moench). Plant Cell Rep. 18:972–977; 1999.

    Article  CAS  Google Scholar 

  • Sanford, J. C. The development of the biolistic process. In Vitro Cell. Dev. Biol. Plant 36:303–308; 2000.

    Google Scholar 

  • Santter, C.; Leduc, N.; Bilang, R.; Iglesias, V. A.; Gisel, A.; Wen, X.; Potrykus, I. Shoot apical meristems as target for gene transfer by microbiolistes. Euphytica 85:45–51; 1995.

    Article  Google Scholar 

  • Sautter, C.; Waldner, H.; Neuhaus-Url, G.; Galli, A.; Neuhaus, G.; Potrykus, I. Micro-targeting: high efficiency gene transfer using a novel approach for the acceleration of microprojectiles. Bio/Technology 9:1080–1085; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Schocher, R. J.; Shillito, R. D.; Saul, M. W.; Paszkowski, J.; Potrykus, I. Cotransformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4:1093–1096; 1986.

    Article  CAS  Google Scholar 

  • Takamizo, T.; Spangenberg, G.; Suginobu, K.; Potrykus, I. Intergeneric somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacca Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol. Gen. Genet. 231:1–6; 1992.

    Article  Google Scholar 

  • Vasil, I. K., ed. Advances in cellular and molecular biology of plants, vol. 4, Molecular improvement of cereal crops. Dordrecht: Kluwer Academic Publishers; 1999.

    Google Scholar 

  • Vasil, I. K.; Vasil, V. Advances in cereal protoplast research. Physiol. Plant. 85:279–283; 1992.

    Article  CAS  Google Scholar 

  • Wang, Z. Y.; Takamizo, T.; Iglesias, V. A.; Osusky, M.; Nagel, J.; Potrykus, I.; Spangenberg, G. Transgenic plants of tall fescue (Festuca arundinaea Scheb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10:691–696; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wernicke, W.; Brettel, R.; Wakizuka, T.; Potrykus, I. Adventitious embryo and root formation from rice leaves. Z. Pflanzenphysiol. 103:361–366; 1981.

    Google Scholar 

  • Wernicke, W.; Potrykus, I.; Thomas, E. Morphogenesis from cultured tissue of Sorghum bicolor—the morphogenic pathway. Protoplasma 111:53–62: 1982.

    Article  CAS  Google Scholar 

  • Wünn, J.; Klöti, A.; Burkhardt, P.; Ghosh-Biswas, G. C.; Launis, K.; Iglesias, V. A.; Potrykus, I. Transgenic Indica rice breeding line IR58 expressing a synthetic GryA(b) gene from Bacillus thuringiensis proves effective insect pest control. Bio/Technology 14:171–176; 1996.

    Article  PubMed  Google Scholar 

  • Ye, X.; Al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305; 2000.

    Article  PubMed  CAS  Google Scholar 

Background Information

  • Anonymous. UNICEF— the state of the world's children. Oxford: Oxford University Press; 1998.

  • Anonymous. Transgenic plants and world agriculture. Report of seven academies from developing and developed countries, document 08/00. London: The Royal Society; 2000.

  • Conway, G. The doubly Green Revolution. London: Penguin Books; 1997.

    Google Scholar 

  • Evans, L. T.; Feeding the ten billion. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  • Lipton, M. Reviving global poverty reduction: what role for genetically modified plants. CGIAR Secretariat. The World Bank; 1999.

  • Nuffield Council on Bioethies. Genetically modified crops: the ethical and social issues. London: Nuffield Foundation; 1999.

    Google Scholar 

  • Persley, G. J.; Lantin, M. M., eds. Agricultural biotechnology and the poor. Washington, DC: CGIAR; 2000.

    Google Scholar 

  • Qaim, M.; Krattiger, A. F.; von Braun, J., eds Agricultural biotechnology in developing countries: towards optimizing the benefits for the poor. Boston, Dordrecht, London: Kluwer Academic Publishers; 2000.

    Google Scholar 

  • World Health Organization. Nutrition for health and development. Progress and prospects on the eve of the 21st century. Geneva: WHO; 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potrykus, I. The ‘Golden rice’ tale. In Vitro Cell.Dev.Biol.-Plant 37, 93–100 (2001). https://doi.org/10.1007/s11627-001-0019-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0019-9

Keywords

Navigation