Skip to main content

Advertisement

Log in

Inhibition of perilipin 2 attenuates cerebral ischemia/reperfusion injury by blocking NLRP3 inflammasome activation both in vivo and in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Cerebral ischemia/reperfusion (CI/R) usually causes neuroinflammation within the central nervous system, further prompting irreversible cerebral dysfunction. Perilipin 2 (Plin2), a lipid droplet protein, has been reported to exacerbate the pathological process in different diseases, including inflammatory responses. However, the role and mechanism of Plin2 in CI/R injury are unclear. In this study, the rat models of transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R) were established to mimic I/R injury, and we found that Plin2 was highly expressed in the ischemic penumbra of tMCAO/R rats. The siRNA-mediated knockdown of Plin2 significantly decreased neurological deficit scores and reduced infarct areas in rats induced by I/R. Detailed investigation showed that Plin2 deficiency alleviated inflammation of tMCAO/R rats as evidenced by reduced secretion of proinflammatory factors and the blockade of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. In vitro experiments showed that Plin2 expression was upregulated in mouse microglia subjected to oxygen–glucose deprivation/reoxygenation (OGD/R). Plin2 knockdown inhibited OGD/R-induced microglia activation and the accumulation of inflammation-related factors. Taken together, this study demonstrates that lipid droplet protein Plin2 contributes to the pathologic process of CI/R damage by impacting inflammatory response and NLRP3 inflammasome activation. Thus, Plin2 may provide a new therapeutic direction for CI/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  • Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A (2018) Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53(5):1473–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen FL, Yang ZH, Wang XC, Liu Y, Yang YH, Li LX, Liang WC, Zhou WB, Hu RM (2010) Adipophilin affects the expression of TNF-alpha, MCP-1, and IL-6 in THP-1 macrophages. Mol Cell Biochem 337(1–2):193–199

    Article  CAS  PubMed  Google Scholar 

  • Cho K-A, Kang PB (2015) PLIN2 inhibits insulin-induced glucose uptake in myoblasts through the activation of the NLRP3 inflammasome. Int J Mol Med 36(3):839–844

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Pile-Spellman J (2018) Reperfusion changes after stroke and practical approaches for neuroprotection. Neuroimaging Clin N Am 28(4):663–682

    Article  PubMed  Google Scholar 

  • Chomova M, Zitnanova I (2016) Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion. Stress 19(4):341–348

    Article  CAS  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W-B (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  • Dhanesha N, Patel RB, Doddapattar P, Ghatge M, Flora GD, Jain M, Thedens D, Olalde H, Kumskova M, Leira EC, Chauhan AK (2022) PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood 139(8):1234–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK (2021) The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun 92:223–233

    Article  PubMed  Google Scholar 

  • Frolov A, Petrescu A, Atshaves BP, So PT, Gratton E, Serrero G, Schroeder F (2000) High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts A single- and multiphoton fluorescence approach. J Biol Chem 275(17):12769–12780

    Article  CAS  PubMed  Google Scholar 

  • Fukushima M, Enjoji M, Kohjima M, Sugimoto R, Ohta S, Kotoh K, Kuniyoshi M, Kobayashi K, Imamura M, Inoguchi T, Nakamuta M, Nawata H (2005) Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell Dev Biol Anim 41(10):321–324

    Article  CAS  PubMed  Google Scholar 

  • Guruswamy R, ElAli A (2017) Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions. Int J Mol Sci 18(3):496

  • He H-Y, Ren L, Guo T, Deng Y-H (2019) Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen Res 14(2):280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman HM, Broderick L (2016) The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol 138(1):3-14

  • Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18(9):2114–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurcau A, Simion A (2021) Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci 23(1):14

  • Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T (2017) Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci 18(10):2135

  • Kawabori M, Yenari MA (2015) Inflammatory responses in brain ischemia. Curr Med Chem 22(10):1258–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13)

  • Kraft P, De Meyer SF, Kleinschnitz C (2012) Next-generation antithrombotics in ischemic stroke: preclinical perspective on ‘bleeding-free antithrombosis.’ J Cereb Blood Flow Metab 32(10):1831–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RHC, Lee MHH, Wu CYC, Couto E, Silva A, Possoit HE, Hsieh T-H, Minagar A, Lin HW (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res 13(3):373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y-S, Jiang Y, Yuan J-P, Jiang S-B, Yang Y, Zhu P-Y, Sun Y-Z, Qi R-Q, Liu T, Wang H-X, Wu Y, Gao X-H, Chen H-D (2020) UVA induced oxidative stress was inhibited by paeoniflorin/Nrf2 signaling or PLIN2. Front Pharmacol 11:736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39(4):429–443

    Article  CAS  PubMed  Google Scholar 

  • Medina-Rodriguez EM, Lowell JA, Worthen RJ, Syed SA, Beurel E (2018) Involvement of innate and adaptive immune systems alterations in the pathophysiology and treatment of depression. Front Neurosci 12:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL, Lydic TA, Jones AD, Atshaves BP (2016) Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 310(9):G726–G738

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W (2019) Anti-inflammatory effects of traditional Chinese medicines on preclinical models of brain ischemia-reperfusion-injury: prospects for neuroprotective drug discovery and therapy. Front Pharmacol 10:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamula R, Thong-Asa W (2018) Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab Brain Dis 33(3):765–773

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Chakraborty D, Bhowmik A, Ghosh MK (2019) Cerebral ischemic stroke: cellular fate and therapeutic opportunities. Front Biosci (landmark Ed) 24(3):435–450

    Article  PubMed  Google Scholar 

  • Shafie M, Yu W (2021) Recanalization therapy for acute ischemic stroke with large vessel occlusion: where we are and what comes next? Transl Stroke Res 12(3):369–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma BR, Kanneganti T-D (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22(5):550–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC (2022) Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 143(2):179–224

    Article  CAS  PubMed  Google Scholar 

  • Sztalryd C, Brasaemle DL (2017) The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 1862(10 Pt B):1221–1232

    Article  CAS  PubMed  Google Scholar 

  • Talma N, Kok WF, de VeijMestdagh CF, Shanbhag NC, Bouma HR, Henning RH (2016) Neuroprotective hypothermia - why keep your head cool during ischemia and reperfusion. Biochim Biophys Acta 1860(11 Pt A):2521–2528

    Article  CAS  PubMed  Google Scholar 

  • Teleanu DM, Niculescu A-G, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23(11)

  • Tsai T-H, Chen E, Li L, Saha P, Lee H-J, Huang L-S, Shelness GS, Chan L, Chang BH-J (2017) The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy 13(7):1130–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner RC, Dodson SC, Rosen CL, Huber JD (2013) The science of cerebral ischemia and the quest for neuroprotection: navigating past failure to future success. J Neurosurg 118(5):1072–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Chen K, Li L, Hao Z, Wang T, Liu Y, Xing G, Liu Z, Li H, Yuan H, Lu J, Zhang C, Zhang J, Zhao D, Wang J, Nie J, Ye D, Pan G, Chan W-Y, Liu X (2022) Plin2-mediated lipid droplet mobilization accelerates exit from pluripotency by lipidomic remodeling and histone acetylation. Cell Death Differ 29(11):2316–2331

    Article  CAS  PubMed  Google Scholar 

  • Xia Q, Zhan G, Mao M, Zhao Y, Li X (2022) TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury. Exp Mol Med 54(2):180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Lee E, Sun Z, Wang X, Ren T, Zou Z, Jin J, Li J, Zhang J, Li Y, Yang Q, Zhang Y, Guo M, Fang Y, Ding X (2021) Perilipin 2 impacts acute kidney injury via regulation of PPAR. J Immunol Res 2021:9972704

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q-Q, Zhou J-W (2019) Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67(6):1017–1035

    Article  PubMed  Google Scholar 

  • Zhang S, Hu L, Han C, Huang R, Ooi K, Qian X, Ren X, Chu D, Zhang H, Du D, Xia C (2021) PLIN2 mediates neuroinflammation and oxidative/nitrosative stress via downregulating phosphatidylethanolamine in the rostral ventrolateral medulla of stressed hypertensive rats. J Inflamm Res 14:6331–6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81371461).

Author information

Authors and Affiliations

Authors

Contributions

XYL and RBS conceived the study. XYL, QSL, and RBS participated in its design and coordination. XYL performed most of the experiments and analyzed the data. XYL and WHY contributed to the establishment of tMCAO/R rat models. XYL, YQ, and FFZ performed behavioral testing experiments and analyzed the data. XYL, QSL, XHM, and QWY drafted the manuscript. RBS supervised the project and edited the paper. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ru-Bo Sui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Li, QS., Yang, WH. et al. Inhibition of perilipin 2 attenuates cerebral ischemia/reperfusion injury by blocking NLRP3 inflammasome activation both in vivo and in vitro. In Vitro Cell.Dev.Biol.-Animal 59, 204–213 (2023). https://doi.org/10.1007/s11626-023-00759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-023-00759-1

Keywords

Navigation