Skip to main content

Advertisement

Log in

Pharmacological and nutritional modulation of autophagy in a rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Autophagy is involved in the modulation of nutrition, immunity, and disease in humans and animals. To understand the impact of autophagy modulation on a rainbow trout gill cell line, RTgill-W1, treatments including reduced nutrition (2% fetal bovine serum compared with 10% control), rapamycin, 3-methyladenine, deoxynivalenol, and chloroquine were tested. Western blot and immunofluorescence were used to detect microtubule-associated protein 1A/1B-light chain protein and quantitative polymerase chain reaction was used to detect the expression of 10 autophagy-related genes. At 3-d post-treatment, reduced nutrition significantly (p < 0.05) increased autophagy while deoxynivalenol significantly (p < 0.01) suppressed it compared to controls. These phenomena were confirmed by using immunofluorescence to detect the number of autophagosomes in RTgill-W1. Chloroquine is critical to allow observation of microtubule-associated protein 1A/1B-light chain protein in this model. The commonly used autophagy-modulating chemicals rapamycin and 3-methyladenine either activated or suppressed microtubule-associated protein 1A/1B-light chain protein, respectively, as expected from the literature, but did not act in a consistently significant manner. Expression of five of the 10 Atg genes, including lc3, gabarap, atg4, atg7, and atg12, were altered in a similar pattern to microtubule-associated protein 1A/1B-light chain protein. The consistent trend of autophagy-related gene upregulation including becn1, lc3, gabarap, and atg9 following treatment with 3-methyladenine and chloroquine is suggestive of a novel feedback regulation in the autophagy machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17:1165–1167

    CAS  PubMed  Google Scholar 

  • Balmori-Cedeno J, Liu JT, Misk E, Lillie B, Lumsden JS (2019) Autophagy-related genes in rainbow trout Oncorhynchus mykiss (Walbaum) gill epithelial cells and their role in nutrient restriction. J Fish Dis 42:549–558

    CAS  PubMed  Google Scholar 

  • Belghit I, Panserat S, Sadoul B, Dias K, Skiba-Cassy S, Seiliez I (2013) Macronutrient composition of the diet affects the feeding-mediated down regulation of autophagy in muscle of rainbow trout (O. mykiss). PLoS One 8:e74308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bols N, Barlian A, Chirino-Trejo M, Caldwell S, Goegan P, Lee L (1994) Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J Fish Dis 17:601–611

    Google Scholar 

  • Cui J, Sim TH, Gong Z, Shen HM (2012) Generation of transgenic zebrafish with liver-specific expression of EGFP-Lc3: a new in vivo model for investigation of liver autophagy. Biochem Biophys Res Commun 422:268–273

    CAS  PubMed  Google Scholar 

  • Donohue E, Tovey A, Vogl AW, Arns S, Sternberg E, Young RN, Roberge M (2011) Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. J Biol Chem 286:7290–7300

    CAS  PubMed  Google Scholar 

  • Ehrlich KC, Daigle KW (1987) Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochim Biophys Acta 923:206–213

    CAS  PubMed  Google Scholar 

  • English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippe R, Desjardins M (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10:480–487

    CAS  PubMed  Google Scholar 

  • Fleming A, Rubinsztein DC (2011) Zebrafish as a model to understand autophagy and its role in neurological disease. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1812:520–526

    CAS  Google Scholar 

  • Grinde B, Seglen PO (1981) Leucine inhibition of autophagic vacuole formation in isolated rat hepatocytes. Exp Cell Res 134:33–39

    CAS  PubMed  Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Wang QC, Zhu CC, Liu J, Zhang Y, Cui XS, Kim NH, Sun SC (2016) Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation. Toxicol Appl Pharmacol 300:70–76

    CAS  PubMed  Google Scholar 

  • He C, Bartholomew CR, Zhou W, Klionsky DJ (2009) Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 5:520–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henagan TM, Laeger T, Navard AM, Albarado D, Noland RC, Stadler K, Elks CM, Burk D, Morrison CD (2016) Hepatic autophagy contributes to the metabolic response to dietary protein restriction. Metab Clin Exp 65:805–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701

    CAS  PubMed  Google Scholar 

  • Hooft JM, Elmor HI, Encarnacao P, Bureau DP (2011) Rainbow trout (Oncorhynchus mykiss) is extremely sensitive to the feed-borne Fusarium mycotoxin deoxynivalenol (DON). Aquaculture (Amsterdam, Netherlands) 311:224–232

    CAS  Google Scholar 

  • Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51:618–631

    CAS  PubMed  Google Scholar 

  • Islam MR, Roh YS, Kim J, Lim CW, Kim B (2013) Differential immune modulation by deoxynivalenol (vomitoxin) in mice. Toxicol Lett 221:152–163

    CAS  PubMed  Google Scholar 

  • Kimura N, Kumamoto T, Kawamura Y, Himeno T, Nakamura K, Ueyama H, Arakawa R (2007) Expression of autophagy-associated genes in skeletal muscle: An experimental model of chloroquine-induced myopathy. Pathobiology 74:169–176

  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, Lin YS, Yeh TM, Liu CC, Liu HS (2008) Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Fu X, Lin Q, Liu L, Liang H, Huang Z, Li N (2017) Autophagy promoted infectious kidney and spleen necrosis virus replication and decreased infectious virus yields in CPB cell line. Fish Shellfish Immun 60:25–32

    CAS  Google Scholar 

  • Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 11:e1004987

    PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhu B, Wu S, Lin L, Liu G, Zhou Y, Wang W, Asim M, Yuan J, Li L, Wang M, Lu Y, Wang H, Cao J, Liu X (2015) Spring viraemia of carp virus induces autophagy for necessary viral replication. Cell Microbiol 17:595–605

    PubMed  Google Scholar 

  • Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7:696–706

    PubMed  Google Scholar 

  • Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14:1435–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng S, Jiang K, Zhang X, Zhang M, Zhou Z, Hu M, Yang R, Sun C, Wu Y (2012) Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch Virol 157:661–668

    CAS  PubMed  Google Scholar 

  • Mizui T, Yamashina S, Tanida I, Takei Y, Ueno T, Sakamoto N, Ikejima K, Kitamura T, Enomoto N, Sakai T, Kominami E, Watanabe S (2010) Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J Gastroenterol 45:195–203

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morais RD, Thome RG, Lemos FS, Bazzoli N, Rizzo E (2012) Autophagy and apoptosis interplay during follicular atresia in fish ovary: a morphological and immunocytochemical study. Cell Tissue Res 347:467–478

    CAS  PubMed  Google Scholar 

  • Mortimore GE, Schworer CM (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270:174–176

    CAS  PubMed  Google Scholar 

  • Nemazanyy I, Montagnac G, Russell RC, Morzyglod L, Burnol AF, Guan KL, Pende M, Panasyuk G (2015) Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun 6:8283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z (2009) Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 297:F244–F256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84:663–679

    CAS  PubMed  Google Scholar 

  • Picon-Camacho SM, Ruiz de Ybanez MR, Holzer AS, Arizcun Arizcun M, Munoz P (2011) In vitro treatments for the theront stage of the ciliate protozoan Cryptocaryon irritans. Dis Aquat Org 94:167–172

    CAS  PubMed  Google Scholar 

  • Rotter BA (1996) Invited review: TOXICOLOGY OF DEOXYNIVALENOL (VOMITOXIN). J Toxicol Environ Health 48:1–34

    CAS  PubMed  Google Scholar 

  • Ryerse IA, Hooft JM, Bureau DP, Anthony Hayes M, Lumsden JS (2016) Diets containing corn naturally contaminated with deoxynivalenol reduces the susceptibility of rainbow trout (Oncorhynchus mykiss) to experimental Flavobacterium psychrophilum infection. Aquac Res 47:787–796

  • Ryerse IA, Hooft JM, Bureau DP, Hayes MA, Lumsden JS (2015) Purified deoxynivalenol or feed restriction reduces mortality in rainbow trout, Oncorhynchus mykiss (Walbaum), with experimental bacterial Coldwater disease but biologically relevant concentrations of deoxynivalenol do not impair the growth of Flavobacterium psychrophilum. J Fish Dis 38:809–819

    CAS  PubMed  Google Scholar 

  • Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H (2007) Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67:9677–9684

    CAS  PubMed  Google Scholar 

  • Schiøtz BL, Roos N, Rishovd AL, Gjoen T (2010) Formation of autophagosomes and redistribution of LC3 upon in vitro infection with infectious salmon anemia virus. Virus Res 151:104–107

    PubMed  Google Scholar 

  • Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seiliez I, Gutierrez J, Salmeron C, Skiba-Cassy S, Chauvin C, Dias K, Kaushik S, Tesseraud S, Panserat S (2010) An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Part B: Biochem Mol Biol 157:258–266

    Google Scholar 

  • Seiliez I, Taty GCT, Bugeon J, Dias K, Sabin N, Gabillard JC (2013) Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting ubiquitin-proteasome and autophagy-lysosome degradative pathways. Gen Comp Endocrinol 186:9–15

    CAS  PubMed  Google Scholar 

  • Skop V, Cahova M, Papackova Z, Palenickova E, Dankova H, Baranowski M, Zabielski P, Zdychova J, Zidkova J, Kazdova L (2012) Autophagy-lysosomal pathway is involved in lipid degradation in rat liver. Physiol Res 61:287–297

    CAS  PubMed  Google Scholar 

  • Sun X, Yang Y, Zhong XZ, Cao Q, Zhu XH, Zhu X, Dong XP (2018) A negative feedback regulation of MTORC1 activity by the lysosomal Ca(2+) channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy 14:38–52

  • Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, Zhan Y, Qiu X, Tan L, Chen H, Song C, Ding C (2014) Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol 88:525–537

    PubMed  PubMed Central  Google Scholar 

  • Tang Y, Li J, Li F, Hu CA, Liao P, Tan K, Tan B, Xiong X, Liu G, Li T, Yin Y (2015) Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic Biol Med 89:944–951

    CAS  PubMed  Google Scholar 

  • Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91

    CAS  PubMed  Google Scholar 

  • Tojo JL. Santamarina MT (1998a) Oral pharmalogical treatments for parasitic diseases of rainbow trout Oncorhynchus mykiss. II Gyrodactylus sp Diseases of Aquatic Organisms 33:187–193

  • Tojo JL, Santamarina MT (1998b) Oral pharmalogical treatments for parasitic diseases of rainbow trout Oncorhynchus mykiss. III Ichthyobodo necator Diseases of Aquatic Organisms 33:195–199

  • Varga M, Fodor E, Vellai T (2015) Autophagy in zebrafish. Methods 75:172–180

    CAS  PubMed  Google Scholar 

  • Verschooten L, Barrette K, Van Kelst S, Romero NR, Proby C, De Vos R, Agostinis P, Garmyn M (2012) Autophagy inhibitor chloroquine enhanced the cell death Inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. PLoS One:7

  • Wang F, Tang J, Li P, Si S, Yu H, Yang X, Tao J, Lv Q, Gu M, Yang H, Wang Z (2018) Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. Cell Physiol Biochem 45:54–66

    CAS  PubMed  Google Scholar 

  • Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O'kane CJ, Floto RA, Rubinsztein DC (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4:295–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Wang X, Qin W, Jiang J & Cheng L (2019) Emerging regulatory mechanisms and functions of autophagy in fish. Aquaculture (Amsterdam, Netherlands), 734212

  • Yabu T, Imamura S, Mizusawa N, Touhata K, Yamashita M (2012) Induction of autophagy by amino acid starvation in fish cells. Mar Biotechnol (New York, NY) 14:491–501

    CAS  PubMed Central  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JH, Zhai B, Gygi SP, Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 112:15790–15797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21:6162–6173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zirin J, Nieuwenhuis J, Samsonova A, Tao R, Perrimon N (2015) Regulators of autophagosome formation in Drosophila muscles. PLoS Genet 11:e1005006

    PubMed  PubMed Central  Google Scholar 

  • Zou Y, Ling YH, Sironi J, Schwartz EL, Perez-Soler R, Piperdi B (2013) The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. J Thorac Oncol 8:693–702

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. P. Pham for technical advice and for review of the manuscript and Dr. R. Horricks for statistical advice. RTgill-W1 was a generous gift from Dr. NC. Bols.

Funding

Funding was provided by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to Lumsden), Ontario Ministry of Agriculture, Food and Rural Affairs, Education Ministry of Taiwan Government (scholarship to Liu). Balmori-Cedeno was supported by an Ontario Veterinary College Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Lumsden.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JT., Balmori-Cedeno, J., Misk, E. et al. Pharmacological and nutritional modulation of autophagy in a rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1. In Vitro Cell.Dev.Biol.-Animal 56, 659–669 (2020). https://doi.org/10.1007/s11626-020-00490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00490-1

Keywords

Navigation