Skip to main content

Advertisement

Log in

Effect of attenuation of fibroblast growth factor receptor 2b signaling on odontoblast differentiation and dentin formation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Attenuation of fibroblast growth factor receptor (FGFR) 2b signaling suppresses the differentiation of oral epithelial stem cells to ameloblasts, their survival and viability remaining unaffected; however, its effect on dentin formation is unknown. This study aimed to clarify the effect of attenuation of FGFR2b signaling on odontoblast differentiation and dentin formation. Initially, we used a murine rtTA transactivator/tetracycline promoter system for inducible and reversible attenuation of FGFR2b signaling in adult mice. Experimental animals overexpressed soluble FGFR2b (sFGFR2b), and wild-type controls were selected from the same litter (WT group). Histological analysis of CMV mice confirmed the obliteration of the enamel and ameloblast layer, and micro CT analysis revealed a significant increase in dentin thickness in CMV mice rather than in WT mice (P < 0.05). On analyzing the expression of dentin-related differentiation factors, DSPP, nestin, and OCN were upregulated in CMV mice compared to WT mice after 2 weeks of attenuation of FGFR2b signaling. Thereafter, on overexpressing sFGFR2b in dental pulp stem cells, RUNX2 and ALP were upregulated; however, DSPP, nestin, and OCN were downregulated in CMV mice compared to WT mice. The present results show that attenuation of FGFR2b signaling in the oral epithelium specifically induced odontoblast differentiation and promotes early-stage dentin calcification in dental pulp tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

References

  • Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P (1988) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A 95:5082–5087

    Article  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  • Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17:1642–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Andrea LD, Del Gatto A, De Rosa L, Romanelli A, Pedone C (2009) Peptides targeting angiogenesis related growth factor receptors. Curr Pharm 15:2414–2429

    Article  CAS  Google Scholar 

  • De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada H, Nagai H, Mine N, Terada Y, Fujiwara H, Mikami I, Tsuneizumi M, Yabe A, Miyazaki K, Yokota T, Imoto I, Inazawa J, Emi M (2001) Molecular cloning, tissue expression, and chromosomal assignment of a novel gene encoding a subunit of the human signal-recognition particle. J Hum Genet 46:70–75

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse fgf gene family. Dev Dyn 237:18–27

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM (2011) Fibroblast growth factors from molecular evolution to roles in development, metabolism and disease. J Biochem 149:121–130

    Article  CAS  PubMed  Google Scholar 

  • Kettunen P, Laurikkala J, Itäranta P, Vainio S, Itoh N, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219:322–332

    Article  CAS  PubMed  Google Scholar 

  • Kørbling M, Estrov Z (2003) Adult stem cells for tissue repair—a new therapeutic concept. N Engl J Med 349:570–582

    Article  PubMed  Google Scholar 

  • Kuang-Hsien Hu J, Mushegyan V, Klein OD (2014) On the cutting edge of organ renewal: identification, regulation, and evolution of incisor stem cells. Genesis 52:79–92

    Article  CAS  PubMed  Google Scholar 

  • Kurosaka H, Islam MN, Kuremoto K, Hayano S, Nakamura M, Kawanabe N, Yanagita T, Rice DP, Harada H, Taniuchi I, Yamashiro T (2011) Core binding factor beta functions in the maintenance of stem cells and orchestrates continuous proliferation and differentiation in mouse incisors. Stem Cells 29:1792–1803

    Article  CAS  PubMed  Google Scholar 

  • Lan Y, Jia S, Jiang R (2014) Molecular patterning of the mammalian dentition. Semin Cell Dev Biol 25–26:61–70

    Article  CAS  PubMed  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280:86–89

    Article  CAS  PubMed  Google Scholar 

  • Mansukhani A, Bellosta P, Sahni M, Basilicoa C (2000) Signaling by fibroblast growth factors (fgf) and fibroblast growth factor receptor 2 (fgfr2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 149:1297–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Jimenez-Rojo L, Koyama E, Pacifici M, de Vega S, Iwamoto M, Fukumoto S, Unda F, Yamada Y (2017) Epiprofin regulates enamel formation and tooth morphogenesis by controlling epithelial-mesenchymal interactions during tooth development. J Bone Miner Res 32(3):601–610

    Article  CAS  PubMed  Google Scholar 

  • Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T (2007) The development of a bioengineered organ germ method. Nat Methods 4:227–230

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF 10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297

    Article  CAS  PubMed  Google Scholar 

  • Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T (2011) Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One 6:e21531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa S, Kuremoto K, Seidel K, Tabatabai R, Mackenzie B, Yamaza T, Akiyama K, Branch J, Koh CJ, Al Alam D, Klein OD, Bellusci S (2010) Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors. Development 137:3743–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagomonyants K, Kalajzic I, Maye P, Mina M (2015) Enhanced dentinogenesis of pulp progenitors by early exposure to FGF2. J Dent Res 94:1582–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141

    Article  CAS  PubMed  Google Scholar 

  • Simann M, Le Blanc S, Schneider V, Zehe V, Lüdemann M, Schütze N, Jakob F, Schilling T (2017) Canonical FGFs prevent osteogenic lineage commitment and differentiation of human bone marrow stromal cells via ERK1/2 signaling. J Cell Biochem 118:263–275

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I, Hurmerinta K (1981) Tissue interactions in tooth development. Differentiation 18:75–88

    Article  CAS  PubMed  Google Scholar 

  • Unda FJ, Martín A, Hilario E, Bègue-Kirn C, Ruch JV, Aréchaga J (2000) Dissection of the odontoblast differentiation process in vitro by a combination of FGF1, FGF2, and TGFbeta1. Dev Dyn 218:480–489

    Article  CAS  PubMed  Google Scholar 

  • Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, Maas RL, Chuong CM, Schimmang T, Thesleff I (2007) An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol 5:e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Oshima M, Tanaka C, Ogawa M, Nakajima K, Ishida K, Moriyama K, Tsuji T (2015) Functional tooth restoration utilising split germs through re-regionalisation of the tooth-forming field. Sci Rep 5:18393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H (2006) Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development 133:1359–1366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Advice and comments given by Dr. Ichiro Takahashi, Department of Mucosal Immunology, Hiroshima University and Dr. Naoya Kakimoto, Department of Oral and Maxillofacial Radiology, Hiroshima University, have been a great help in this report. The authors thank Dr. Shinji Hiyama, Hiroshima University, and Dr. Shigeki Suzuki, Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, for providing technical support.

Funding

This study was supported by a Grant-in-Aid for Scientific Research from the National Institute of Biomedical Innovation in Japan (Project ID 16 K115920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh-ichi Kuremoto.

Ethics declarations

This study was approved by the Hiroshima University Animal Experiment Facility (Hiroshima University Animal Experiment Approval No. A14-144, Genetically Modified Organism Experiment Approval No. 26-220).

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoi, M., Kuremoto, Ki., Okada, S. et al. Effect of attenuation of fibroblast growth factor receptor 2b signaling on odontoblast differentiation and dentin formation. In Vitro Cell.Dev.Biol.-Animal 55, 211–219 (2019). https://doi.org/10.1007/s11626-019-00323-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00323-w

Keywords

Navigation