Skip to main content

Advertisement

Log in

FGF4 and FGF9 have synergistic effects on odontoblast differentiation

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ruch JV, Lesot H, Be`que-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68

    CAS  PubMed  Google Scholar 

  2. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15:301–316

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Parada C, Chai Y (2017) Cellular and molecular mechanisms of tooth root development. Development 144:374–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  CAS  PubMed  Google Scholar 

  5. Oshima M, Tsuji T (2014) Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 102:123–136

    Article  CAS  PubMed  Google Scholar 

  6. Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268

    Article  CAS  PubMed  Google Scholar 

  7. Tompkins K (2006) Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res 47:111–118

    Article  CAS  PubMed  Google Scholar 

  8. Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27

    Article  CAS  PubMed  Google Scholar 

  9. Kettunen P, Laurikkala J, Itaranta P, Vainio S, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219:322–332

    Article  CAS  PubMed  Google Scholar 

  10. Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H (2004) Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem 52:103–112

    Article  CAS  PubMed  Google Scholar 

  11. Li CY, Prochazka J, Goodwin AF, Klein OD (2014) Fibroblast growth factor signaling in mammalian tooth development. Odontology 102:1–13

    Article  CAS  PubMed  Google Scholar 

  12. Du W, Du W, Yu H (2018) The role of fibroblast growth factors in tooth development and incisor renewal. Stem Cells Int 11:7549160

    Google Scholar 

  13. Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet 22:374–385

    Article  CAS  PubMed  Google Scholar 

  14. Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  CAS  PubMed  Google Scholar 

  15. Thesleff I (2003) Epithelial-mesenchymal signaling regulating tooth morphogenesis. J Cell Sci 116:1647–1648

    Article  CAS  PubMed  Google Scholar 

  16. Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimura M, Saito A, Onodera S, Nakamura T, Suematsu M, Shintani S, Azuma T (2022) The concurrent stimulation by Wnt and FGF8 signaling induces differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 55(1):8–19

    Article  CAS  PubMed  Google Scholar 

  18. Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    Article  CAS  PubMed  Google Scholar 

  19. MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 272:835–842

    Article  CAS  PubMed  Google Scholar 

  20. Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279(18):19141–19148

    Article  CAS  PubMed  Google Scholar 

  21. Ye L, Mishina Y, Chen D, Huang H, Dallas MR, Sivakumar P, Kunieda T, Tsutsui TW, Boskey A, Bonewald LF, Feng JQ (2005) Dmp1 deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280(7):6197–6203

    Article  CAS  PubMed  Google Scholar 

  22. Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A (2006) Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 281:19064–19071

    Article  CAS  PubMed  Google Scholar 

  23. Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 86:1134–1141

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Zhang Y, Ramachandran A, George A (2016) DSPP Is essential for normal development of the dental-craniofacial complex. J Dent Res 95:302–310

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y (2013) FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 140(21):4375–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5:500–507

    Article  CAS  PubMed  Google Scholar 

  27. Kelleher FC, O’Sullivan H, Smyth E, McDremott R, Viterbo A (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 34:2198–2205

    Article  CAS  PubMed  Google Scholar 

  28. Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280(33):29717–29727

    Article  CAS  PubMed  Google Scholar 

  30. Camilleri S, McDonald F (2006) Review Runx2 and dental development. Eur J Oral Sci 114:361–373

    Article  CAS  PubMed  Google Scholar 

  31. Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71:131–146

    Article  CAS  PubMed  Google Scholar 

  32. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guagnano V, Kauffmann A, Wohrle S (2012) FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2(12):1118–1133

    Article  CAS  PubMed  Google Scholar 

  34. Yang G, Jiang J, Lu W (2015) Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci 16(10):24011–24031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braga R (2019) Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 35:3–14

    Article  CAS  PubMed  Google Scholar 

  36. Mullane EM, Dong Z, Sedgley CM, Hu JCC, Botero TM, Holland GR, Nor JE (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87:1144–1148

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E (2022) iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater 14:290–301

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Japan Society for the Promotion of Science (18H03007 and 19K19074). Genetic engineering of mice was partly supported by JST ERATO Suematsu Gas Biology (2010–2015, M.S. as the lead). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Azuma.

Ethics declarations

Conflict of interest

The authors have stated explicitly that there are no conflicts of interest in connection with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, T., Onodera, S., Kimura, M. et al. FGF4 and FGF9 have synergistic effects on odontoblast differentiation. Med Mol Morphol 56, 159–176 (2023). https://doi.org/10.1007/s00795-023-00351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-023-00351-2

Keywords

Navigation