Skip to main content

Advertisement

Log in

Proteasome activity in a naïve mosquito cell line infected with Wolbachia pipientis wAlbB

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We used Wolbachia pipientis strain wAlbB from Aedes albopictus Aa23 cells to infect clonal Ae. albopictus TK-6 cells, which are resistant to 5-bromodeoxyuridine. Infected TK-6 cells were cultured in medium containing 5-bromodeoxyuridine to select against Aa23 cells that might have persisted in the inoculum. Infected TK-6 lines retained the Wolbachia infection for 5 mo, indicating that their metabolic processes support Wolbachia growth and multiplication. To investigate early events after Wolbachia infection, we labeled infected cells with 35S[methionine/cysteine]. Patterns of labeled proteins on sodium dodecyl sulfate gels were similar in control and infected cells, with the exception of a 29-kDa protein. Tandem mass spectrometry revealed that the 29-kDa band included α and β subunits of the 26S proteasome. Independent confirmation of the up-regulation of the proteasome was established by probing Western blots with a monoclonal antibody to the proteasome-associated co-factor, ubiquitin. Wolbachia’s loss of metabolic pathways for the synthesis of most amino acids and retention of pathways for their uptake and metabolism suggest that proteasome activation provides a mechanism whereby controlled degradation of intracellular host proteins would increase availability of amino acids to support establishment and maintenance of the Wolbachia infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Brennan, L. J.; Keddie, B. A.; Braig, H. R.; Harris, H. L. The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS ONE 35: e2083; 2008. doi:10.1371/journal.pone.0002083.

    Article  PubMed  Google Scholar 

  • DeMartino, G. N.; Gillette, T. G. Proteasomes: machines for all reasons. Cell 129: 659–662; 2007. doi:10.1016/j.cell.2007.05.007.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, S. L.; Marsland, E. J.; Veneti, Z.; Bourtzis, K.; O’Neill, S. L. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 68: 656–660; 2002. doi:10.1128/AEM.68.2.656-660.2002.

    Article  PubMed  CAS  Google Scholar 

  • Dulbecco, R.; Vogt, M. Plaque formation and isolation of pure lines with poliomyelitis virus. J. Exp. Med. 99: 167–182; 1954. doi:10.1084/jem.99.2.167.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, A. M. Transfection of cultured mosquito cells. In: Crampton J. M.; Beard C. B.; Louis C. (eds) Molecular biology of insect disease vectors. Chapman and Hall, New York, pp 430–443; 1997.

    Google Scholar 

  • Fallon, A. M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In Vitro Cell. Dev. Biol.—Animal 44: 154–161; 2008. doi:10.1007/s11626-008-9090-4.0.

    Article  CAS  Google Scholar 

  • Fallon, A. M.; Hellestad, V. J. Standardization of a colorimetric method to quantify growth and metabolic activity of Wolbachia-infected mosquito cells. In Vitro Cell. Dev. Biol.—Animal 44: 351–356; 2008.

    Article  Google Scholar 

  • Hotopp, J. C.; Lin, M.; Madupu, R.; Crabtree, J.; Angiuoli, S. V.; Eisen, J.; Seshadri, R. et al. Comparative genomics of emerging human Ehrlichiosis agents. PLoS. Genetics. 22: e21; 2006. doi:10.1371/journal.pgen.0020021.

    Article  PubMed  Google Scholar 

  • Kinter, M.; Sherman, N. E. The preparation of protein digests for mass spectrometric sequencing experiments. In: Protein sequencing and identification using tandem mass spectrometry. Wiley-Interscience, New York, pp 147–165; 2000.

  • Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685; 1970. doi:10.1038/227680a0.

    Article  PubMed  CAS  Google Scholar 

  • Lecker, S. H.; Goldberg, A. L.; Mitch, W. E. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17: 1807–1819; 2006. doi:10.1681/ASN.2006010083.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. H.; Goldberg, A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell. Biol. 8: 397–403; 1998. doi:10.1016/S0962-8924(98)01346-4.

    Article  PubMed  CAS  Google Scholar 

  • Mazzacano, C. A.; Fallon, A. M. Thymidine kinase-deficient mutants of Aedes albopictus mosquito cells. In Vitro Cell. Develop. Biol.—Animal 28: 455–458; 1992. doi:10.1007/BF02634051.

    Article  Google Scholar 

  • Mazzacano, C. A.; Fallon, A. M. Evaluation of a viral thymidine kinase gene for suicide selection in transfected mosquito cells. Insect Mol. Biol. 4: 125–134; 1995. doi:10.1111/j.1365-2583.1995.tb00017.x.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, S. L.; Pettigrew, M. M.; Sinkins, S. P.; Braig, H. R.; Andreadis, T. G.; Tesh, R. B. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 6: 33–39; 1997. doi:10.1046/j.1365-2583.1997.00157.x.

    Article  PubMed  Google Scholar 

  • Rasgon, J. L.; Ren, X.; Petridis, M. Can Anopheles gambiae be infected with Wolbachia pipientis? Insights from an in vitro system. Appl. Environ. Microbiol. 72: 7718–7722; 2006. doi:10.1128/AEM.01578-06.

    Article  PubMed  CAS  Google Scholar 

  • Shih, K. M.; Gerenday, A.; Fallon, A. M. Culture of mosquito cells in Eagle’s medium. In Vitro Cell. Develop. Biol.—Animal 34: 629–630; 1998. doi:10.1007/s11626-996-0010-1.

    Article  CAS  Google Scholar 

  • Wu, M.; Sun, L. V.; Vamathevan, J.; Riegler, M.; Deboy, R.; Brownlie, J. C. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2: E69; 2004. doi:10.1371/journal.pbio.0020069.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grant AI 070913 and by the University of Minnesota Agricultural Experiment Station, St. Paul, MN. Protein analysis was done at the University of Minnesota Mass Spectrometry Consortium for the Life Sciences & Proteome Analysis Core Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Fallon.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallon, A.M., Witthuhn, B.A. Proteasome activity in a naïve mosquito cell line infected with Wolbachia pipientis wAlbB. In Vitro Cell.Dev.Biol.-Animal 45, 460–466 (2009). https://doi.org/10.1007/s11626-009-9193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9193-6

Keywords

Navigation