Skip to main content

Advertisement

Log in

Numerical study of desalination characteristics of flow-by type cation intercalation desalination cells with different structural parameters

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the development of the water treatment technology by capacitive deionization (CDI) method, some intercalation materials are gradually used in electrodes to enhance the desalination performance. In this paper, the mass conservation equation, energy conservation equation, and current conservation equation are coupled to establish a theoretical framework for modeling CDIs using intercalation materials, and the multi-physical fields such as the flow field, the electric field, and ion concentration distribution during the charging and discharging processes are analyzed. The effects of structural parameters such as the electrode thickness, spacer channel size, and ion exchange membrane thickness on the ion concentration distribution, intercalated-Na fraction distribution, volumetric energy consumption, salt adsorption capacity (SAC), and average salt adsorption rate (ASAR) are also investigated. The results show that during the charging process, the concentration increases from the inlet to the outlet on the left side of the membrane and decreases from the inlet to the outlet on the right side of the membrane. The intercalated-Na fraction distribution exhibits a certain degree of inhomogeneity in both the electrode thickness direction and the flow direction. An increased spacer channel size delays the time for the effluent concentration to reach its maximum, and increasing the thickness of the electrode not only has a similar effect, but also has a longer overall desalination time. Increasing the thickness of the ion exchange membrane significantly increases the magnitude of the cell voltage change, while the increase in electrode thickness significantly delays the time for the cell to reach the cutoff voltage. An increase in electrode thickness weakens the ASAR and increases the volumetric energy consumption, so choosing a smaller electrode thickness in the appropriate current density range can help improve the performance of the cell. Increasing the size of the spacer channel will weaken the concentration drop and SAC, so a larger spacer channel size is not conducive to the improvement of the desalination performance. Increasing the thickness of the ion exchange membrane leads to increased energy consumption and reduced SAC, so choosing a thinner ion exchange membrane thickness in the appropriate current density range can help improve the cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Khaled E, Mohammed K, Taha SE et al (2020) Environmental impact of desalination technologies: a review. Sci Total Environ 748:141528

    Article  Google Scholar 

  2. Zhang P, Li J, Chan-Park MB (2020) Hierarchical porous carbon for high-performance capacitive desalination of brackish water. ACS Sustain Chem Eng 8(25):9291–9300

    Article  CAS  Google Scholar 

  3. Wangwang T, Jie L, Di H et al (2019) Various cell architectures of capacitive deionization: recent advances and future trends. Water Res 150:225–251

    Article  Google Scholar 

  4. Xudong Z, Kuichang Z, Xiaori Z et al (2020) Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ Sci: Water Res Technol 6(2):243–257

    Google Scholar 

  5. Xiaoyu Z, Hongxin W, Huachao Z et al (2020) Electrode materials for capacitive deionization: a review. J Electroanal Chem 873:114416

    Article  Google Scholar 

  6. Subramani A, Jacangelo JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187

    Article  CAS  PubMed  Google Scholar 

  7. Chen P-A, Cheng H-C, Wang HP (2018) Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water. J Clean Prod 174:927–932

    Article  CAS  Google Scholar 

  8. Xu X, Zhang S, Tang J et al (2020) Nitrogen-doped nanostructured carbons: a new material horizon for water desalination by capacitive deionization. Energy Chem 2(5):100043

    Article  Google Scholar 

  9. Yang F, He Y, Rosentsvit L et al (2021) Flow-electrode capacitive deionization: a review and new perspectives. Water Res 200:117222

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Ma J, Wu L et al (2021) Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives. Environ Sci Technol 55(8):4243–4267

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Shang X, Li H et al (2021) A brief review on high-performance capacitive deionization enabled by intercalation electrodes. Global Chall 5(1):2000054

    Article  Google Scholar 

  12. Elisadiki J, King’ondu CK (2020) Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: a review. J Electroanal Chem 878:114588

    Article  CAS  Google Scholar 

  13. Folaranmi G, Bechelany M, Sistat P et al (2020) Towards electrochemical water desalination techniques: a review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization. Membranes 10(5):96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Xu X, Wan L et al (2021) Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Mater Chem Front 5(8):3480–3488

    Article  CAS  Google Scholar 

  15. Ding Z, Xu X, Li J et al (2022) Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chem Eng J 430:133161

    Article  CAS  Google Scholar 

  16. Singh K, Porada S, Gier HDD et al (2019) Timeline on the application of intercalation materials in capacitive deionization. Desalination 455:115–134

    Article  CAS  Google Scholar 

  17. Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264(5162):1115–1118

    Article  CAS  PubMed  Google Scholar 

  18. Ramesh KG, Juan CI (2016) A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6(3):41

    Article  Google Scholar 

  19. Singh K, Bouwmeester HJM, Smet LCPMD et al (2018) Theory of water desalination with intercalation materials. Phys Rev Appl 9(6):064036

    Article  CAS  Google Scholar 

  20. Lee J, Kim S, Kim C et al (2014) Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ Sci 7(11):3683–3689

    Article  CAS  Google Scholar 

  21. Chen F, Huang Y, Guo L et al (2017) A dual-ion electrochemistry deionization system based on AgCl-Na 0.44 MnO 2 electrodes. Nanoscale 9(28):10101–10108

    Article  CAS  PubMed  Google Scholar 

  22. Seonghwan K, Jaehan L, Choonsoo K et al (2016) Na2FeP2O7 as a novel material for hybrid capacitive deionization. Electrochim Acta 203:265–271

    Article  Google Scholar 

  23. Wang K, Liu Y, Ding Z et al (2021) Controlled synthesis of NaTi2(PO4)3/Carbon composite derived from metal-organic-frameworks as highly-efficient electrodes for hybrid capacitive deionization. Sep Purif Technol 278:119565

    Article  Google Scholar 

  24. Chen Z, Xu X, Liu Y et al (2022) Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure. Desalination 528:115616

    Article  CAS  Google Scholar 

  25. Chen Z, Ding Z, Chen Y et al (2023) Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate−on−MXene nano-stacking for high-performance capacitive deionization. Chem Eng J 452:139451

    Article  CAS  Google Scholar 

  26. Kevin H, Samuel W, Isaac C et al (2018) Prussian blue analogs as battery materials. Joule 2(10):1950–1960

    Article  Google Scholar 

  27. Suss ME, Baumann TF, Bourcier WL et al (2012) Capacitive desalination with flow-through electrodes. Energy Environ Sci 5(11):9511–9519

    Article  CAS  Google Scholar 

  28. Biesheuvel P (2009) Thermodynamic cycle analysis for capacitive deionization. J Colloid Interface Sci 332(1):258–264

    Article  CAS  PubMed  Google Scholar 

  29. Liu R, Yao S, Shen Y et al (2022) Numerical simulation of the water desalination process based on a modified Gouy-Chapman-Stern (GCS) model for a membrane capacitive deionization (MCDI) unit. Int J Electrochem Sci 17(220741):2

    Google Scholar 

  30. Wang L, Biesheuvel P, Lin S (2018) Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model. J Colloid Interface Sci 512:522–528

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Smith KC (2019) Intercalated cation disorder in prussian blue analogues: first-principles and grand canonical analyses. J Phys Chem C 123(16):10191–10204

    Article  CAS  Google Scholar 

  32. Erinmwingbovo C, Palagonia MS, Brogioli D et al (2017) Intercalation into a Prussian blue derivative from solutions containing two species of cations. Chem Phys Chem 18(8):917–925

    Article  CAS  PubMed  Google Scholar 

  33. Shrivastava A, Smith KC (2018) Electron conduction in nanoparticle agglomerates limits apparent Na + diffusion in Prussian blue analogue porous electrodes. J Electrochem Soc 165(9):A1777

    Article  CAS  Google Scholar 

  34. Liu S, Smith KC (2018) Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination. Electrochim Acta 271:652–665

    Article  CAS  Google Scholar 

  35. Smith KC (2017) Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim Acta 230:333–341

    Article  CAS  Google Scholar 

  36. Porada S, Shrivastava A, Bukowska P et al (2017) Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim Acta 255:369–378

    Article  CAS  Google Scholar 

  37. Smith KC, Dmello R (2016) Na-Ion Desalination (NID) Enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J Electrochem Soc 163(3):A530–A539

    Article  CAS  Google Scholar 

  38. Shin Y-U, Lim J, Boo C et al (2021) Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency. Desalination 502:114930

    Article  CAS  Google Scholar 

  39. Zhao R, Satpradit O, Rijnaarts H et al (2013) Optimization of salt adsorption rate in membrane capacitive deionization. Water Res 47(5):1941–1952

    Article  CAS  PubMed  Google Scholar 

  40. Reale ER, Shrivastava A, Smith KC (2019) Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. Water Res 165:114995

    Article  CAS  PubMed  Google Scholar 

  41. Biesheuvel PM, Zhao R, Porada S et al (2011) Theory of membrane capacitive deionization including the effect of the electrode pore space. J Colloid Interface Sci 360(1):239–248

    Article  CAS  PubMed  Google Scholar 

  42. Liu R, Luo J, Yao S et al (2022) Three-dimensional lattice Boltzmann simulation of reactive transport and ion adsorption processes in battery electrodes of cation intercalation desalination cells. Sep Purif Technol 298:121626

    Article  CAS  Google Scholar 

  43. Nordstrand J, Zuili L, Toledo-Carrillo EA et al (2022) Predicting capacitive deionization processes using an electrolytic-capacitor (ELC) model: 2D dynamics, leakages, and multi-ion solutions. Desalination 525:115493

    Article  CAS  Google Scholar 

  44. Xiaobing W, Jinqiu L, Yang L et al (2021) Numerical analysis of capacitive deionization process using activated carbon electrodes. Water Air Soil Pollut 232(9):1–10

    Article  Google Scholar 

  45. Amiri A, Vafai K (1998) Transient analysis of incompressible flow through a packed bed. Int J Heat Mass Transf 41(24):4259–4279

    Article  CAS  Google Scholar 

  46. Shouguang Y, Zhangtian W, Rui L et al (2022) Influence of operation parameters and design parameters on desalination performance of Na-ion desalination battery. Ionics 28(4):1791–1807

    Article  Google Scholar 

  47. Liu R, Yao S, Shen Y (2022) Pore-scale study of ion transport and intercalation processes of capacitive deionization cells with intercalation electrodes based on lattice Boltzmann method. Desalination 532:115718

    Article  CAS  Google Scholar 

  48. Kamcev J, Paul DR, Manning GS et al (2018) Ion diffusion coefficients in ion exchange membranes: Significance of counterion condensation. Macromolecules 51(15):5519–5529

    Article  CAS  Google Scholar 

  49. Shrivastava A, Do VQ, Smith KC (2022) Efficient, selective sodium and lithium removal by faradaic deionization using symmetric sodium titanium vanadium phosphate intercalation electrodes. ACS Appl Mater Interfaces 14(27):30672–30682

    Article  CAS  PubMed  Google Scholar 

  50. Ahn J, Lee J, Kim S et al (2020) High performance electrochemical saline water desalination using silver and silver-chloride electrodes. Desalination 476:114216

    Article  CAS  Google Scholar 

  51. Taeyoung K, Jeyong Y (2015) CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Adv 5(2):1456–1461

    Article  Google Scholar 

  52. Singh K, Zhang L, Zuilhof H et al (2020) Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: experiment, model and comparison with carbon. Desalination 496:114647

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51906091 and 51776092) and Qinglan Project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Liu or Shouguang Yao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhang, Q., Yao, S. et al. Numerical study of desalination characteristics of flow-by type cation intercalation desalination cells with different structural parameters. Ionics 29, 1431–1446 (2023). https://doi.org/10.1007/s11581-023-04907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04907-1

Keywords

Navigation