Skip to main content

Numerical Modeling of a Desalination Process Through the Ion-Exchange Membranes of a Electrodialysis Cell

  • Conference paper
  • First Online:
The 16th International Conference Interdisciplinarity in Engineering (Inter-Eng 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 605))

Included in the following conference series:

  • 432 Accesses

Abstract

A bi-dimensional electrodialysis unit cell model was developed in this study by using a Finite Element Method (FEM) technique. This model, implemented with Comsol Multiphysics software, considers a variable current density along the flow direction at a constant voltage drop due to a variation in salt concentration. Ion and charge transport, current density and potential profile along the cell were numerically investigated here. Nernst-Planck equation with three modes of mass transport (diffusion, migration, convection) and Navier-Stokes equation, completed with Faraday's law and Nernst- Einstein equation were involved in the design. The cell model was based on interpolymer type ion exchange membranes of 0.13 and 0.18 mm thickness, with specific ionic conductivities at NaCl feed concentrations of 0.1 M and 0.25 M. Limiting current density (LCD) for the two - unit cell models was evaluated at different linear feed velocities using Lee - Strathmann model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Amshawee, S., Yunus, M.Y.B.M., Azoddein, A.A.M., Hassell, D.G., Dakhil, I.H., Abu Hasan, H.: Electrodialysis desalination for water and wastewater: a review. Chem. Eng. J. 380, 122231 (2020)

    Google Scholar 

  2. Galama, A.H., Saakes, M., Bruning, H., Rijnaarts, H.H.M., Post, J.W.: Seawater predesalination with electrodialysis. Desalination 342, 61–69 (2014)

    Article  Google Scholar 

  3. Patel, S.K., Biesheuvel, P.M., Elimelech, M.: Energy consumption of brackish water desalination: identifying the sweet spots for electrodialysis and reverse osmosis. ACS EST Eng. 1, 851–864 (2021)

    Article  Google Scholar 

  4. Liu, Y., et al.: Preparation of water-based anion-exchange membrane from PVA for anti-fouling in the electrodialysis process. J. Membr. Sci. 570–571, 130–138 (2019)

    Article  Google Scholar 

  5. Acevedo-Morantes, M., Colón, G., Realpe, A.: Electrolytic removal of nitrate and potassium from wheat leachate using a four compartment electrolytic cell. Desalination 278, 354–364 (2011)

    Article  Google Scholar 

  6. Mahmoud, A., Hoadley, A.F.A.: An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res. 46(10), 3364–3376 (2012)

    Article  Google Scholar 

  7. Nichka, V.S., Geoffroy, T.R., Nikonenko, V., Bazinet, L.: Impacts of flow rate and pulsed electric field current mode on protein fouling formation during bipolar membrane electroacidification of skim milk. Membranes 10(9), 200 (2020)

    Article  Google Scholar 

  8. Dufton, G., Mikhaylin, S., Gaaloul, S., Bazinet, L.: How electrodialysis configuration influences acid whey deacidification and membrane scaling. J. Dairy Sci. 101, 7833–7850 (2018)

    Article  Google Scholar 

  9. Lee, H.-J., Strathmann, H., Moon, S.-H.: Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity. Desalination 190, 43–50 (2006)

    Article  Google Scholar 

  10. Geraldes, V., Afonso, M.D.: Limiting current density in the electrodialysis of multi-ionic solutions. J. Membr. Sci. 360, 499–508 (2010)

    Article  Google Scholar 

  11. Nikonenko, V.V., Istoshin, A.G., Urtenov, M.K., Zabolotsky, V.I., Larchet, C., Benzaria, J.: Analysis of electrodialysis water desalination costs by convective-diffusion model. Desalination 126, 207–211 (1999)

    Article  Google Scholar 

  12. Tanaka, Y.: Current density distribution and limiting current density in ion-exchange membrane electrodialysis. J. Membr. Sci. 173, 179–190 (2000)

    Article  Google Scholar 

  13. La Cerva, M., et al.: Determination of limiting current density and current efficiency in electrodialysis units. Desalination 445, 138–148 (2018)

    Article  Google Scholar 

  14. Kontturi, A.-K., Kontturi, K., Mafet, S., Manzanares, J.A., Niinikoski, P., Vuoristo, M.: Convective diffusion in porous membranes with adsorbed charges. Langmuir 10, 949–954 (1994)

    Article  Google Scholar 

  15. Tado, K., Sakai, F., Sano, Y., Nakayama, A.: An analysis on ion transport process in electrodialysis desalination. Desalination 378, 60–66 (2016)

    Article  Google Scholar 

  16. Ghorbani, A., Ghassemi, A.: Brackish water desalination using electrodialysis: predictive mass transfer and concentration distribution model along the electrodialyzer. Water Sci Technol 77(3), 597–607 (2018)

    Article  Google Scholar 

  17. Brauns, E.: Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half-cell pair. Desalin. Water Treat. 51, 6429–6443 (2013)

    Article  Google Scholar 

  18. Zourmand, Z., Faridirad, F., Kasiri, N., Mohammadi, T.: Mass transfer modeling of desalination through an electrodialysis cell. Desalination 359, 41–51 (2015)

    Article  Google Scholar 

  19. Tanaka, Y.: Concentration polarization in ion-exchange membrane electrodialysis the events arising in a flowing solution in a desalting cell. J. Membr. Sci. 216, 149–164 (2003)

    Article  Google Scholar 

  20. Zabolotsky, V.I., Manzanares, J.A., Nikonenko, V.V., Lebedev, K.A., Lovtsov, E.G.: Space charge effect on competitive ion transport through ion-exchange membranes. Desalination 147, 367–392 (2002)

    Article  Google Scholar 

  21. Andriollo, D.: Experimental and modelling-based evaluation of electrodialysis for the desalination of watery streams, MS thesis University of Padua (2014)

    Google Scholar 

  22. Cho, D.H., Lee, K.H., Kim, Y.M., Park, S.H., Lee, W.H., Lee, S.M.: Effect of cationic groups in poly (arylene ether sulfone) membranes on reverse electrodialysis performance. Chem. Commun. 53, 2323–2326 (2017)

    Article  Google Scholar 

  23. Shahi, V.K., Murugesh, A.P., Makawana, B.S., Thampy, S.K., Rangarajan, R.: Comparative investigations on electrical conductance of ion–exchange membranes. Indian J. Chem. 39A, 1264–1269 (2000)

    Google Scholar 

  24. Káňavová, N., Machuča, L., Tvrzník, D.: Determination of limiting current density for different electrodialysis modules. Chem. Pap. 68(3), 324–329 (2013). https://doi.org/10.2478/s11696-013-0456-z

    Article  Google Scholar 

  25. Golam Hyder, A.H.M., Morales, B.A., Cappelle, M.A., Percival S.J., Small, L.J., Spoerke E.D., Rempe S.B., Walker, W.S.: Evaluation of electrodialysis desalination performance of novel bioinspired and conventional ion exchange membranes with sodium chloride feed solutions. Membranes (Basel) 11(3), 217 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Ionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ionescu, V. (2023). Numerical Modeling of a Desalination Process Through the Ion-Exchange Membranes of a Electrodialysis Cell. In: Moldovan, L., Gligor, A. (eds) The 16th International Conference Interdisciplinarity in Engineering. Inter-Eng 2022. Lecture Notes in Networks and Systems, vol 605. Springer, Cham. https://doi.org/10.1007/978-3-031-22375-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22375-4_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22374-7

  • Online ISBN: 978-3-031-22375-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics