Skip to main content

Advertisement

Log in

Fabrication, structure, electrochemical properties, and enhanced pseudocapacitive performance of cobalt oxyhydroxide films via a simple strategy

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cobalt oxyhydroxide (CoOOH) has recently emerged as a promising electrode material for energy storage. Herein amorphous CoOOH and Mn-doped CoOOH films were prepared by anodic deposition, and the effect of Mn doping on the pseudocapacitive behaviors of CoOOH material was investigated. When tested in 1 M NaOH, the area specific capacitance (CA, F cm−2) of CoOOH material can be increased by doping 7.59 at. % Mn due to much increased surface area. When tested in 1 M NaCl, the CA of 7.59 at. % Mn-doped CoOOH film increased with the increasing CV cycle number during ~ 100–1000 CV cycle, and became more and more larger than that of CoOOH film during 434–1000 CV cycle, which was mainly attributed to the increasing surface area during CV test. These indicated that surface area was a vital factor to improve the pseudocapacitive behaviors of CoOOH material. Consequently, depositing a fine nanostructured CoOOH film onto a conductive, porous and high surface area substrate is considered as an effective method to further improve its pseudocapacitive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    CAS  Google Scholar 

  2. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    CAS  PubMed  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    CAS  PubMed  Google Scholar 

  4. Gonzalez A, Goikolea E, Andoni Barrena J, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    CAS  Google Scholar 

  5. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498

    CAS  Google Scholar 

  6. Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049

    CAS  PubMed  Google Scholar 

  7. Zeng Z, Liu YY, Zhang WD, Chevva H, Wei JJ (2017) Improved superconductor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field. J Power Sources 358:22–28

    CAS  Google Scholar 

  8. Tahmasebi MH, Raeissi K, Golozar MA, Vicenzo A, Hashempour M, Bestetti M (2016) Tailoring the pseudocapacitive behavior of electrochemically deposited manganese-nickel oxide films. Electrochim Acta 190:636–647

    CAS  Google Scholar 

  9. Lota G, Frackowiak E (2009) Striking capacitance of carbon/iodide interface. Electrochem Commun 11:87–90

    CAS  Google Scholar 

  10. Roldan S, Blanco C, Granda M, Menendez R, Santamaria R (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem Int Ed 50:1699–1701

    CAS  Google Scholar 

  11. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423

    CAS  Google Scholar 

  12. Chang J-K, Huang C-H, Lee M-T, Tsai W-T, Deng M-J, Sun IW (2009) Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. Electrochim Acta 54:3278–3284

    CAS  Google Scholar 

  13. Lee G, Varanasi CV, Liu J (2015) Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7:3181–3188

    CAS  PubMed  Google Scholar 

  14. Yu X, Yun S, Yeon JS, Bhattacharya P, Wang L, Lee SW, Hu X, Park HS (2018) Emergent pseudocapacitance of 2D nanomaterials. Adv Energy Mater 8:1702930

    Google Scholar 

  15. Machefaux E, Brousse T, Belanger D, Guyomard D (2007) Supercapacitor behavior of new substituted manganese dioxides. J Power Sources 165:651–655

    CAS  Google Scholar 

  16. Ghodbane O, Pascal J-L, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. Acs Appl Mater Inter 1:1130–1139

    CAS  Google Scholar 

  17. Song M-K, Cheng S, Chen H, Qin W, Nam K-W, Xu S, Yang X-Q, Bongiorno A, Lee J, Bai J, Tyson TA, Cho J, Liu M (2012) Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano Lett 12:3483–3490

    CAS  PubMed  Google Scholar 

  18. Wen J, Ruan X, Zhou Z (2009) Preparation and electrochemical performance of novel ruthenium-manganese oxide electrode materials for electrochemical capacitors. J Phys Chem Solids 70:816–820

    CAS  Google Scholar 

  19. Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir 21:5907–5913

    CAS  PubMed  Google Scholar 

  20. Chang J-K, Hsieh W-C, Tsai W-T (2008) Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn-Co oxide electrodes. J Alloys Compd 461:667–674

    CAS  Google Scholar 

  21. Hsieh Y-C, Lee K-T, Lin Y-P, Wu N-L, Donne SW (2008) Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor. J Power Sources 177:660–664

    CAS  Google Scholar 

  22. Ye Q, Dong R, Xia Z, Chen G, Wang H, Tan G, Jiang L, Wang F (2014) Enhancement effect of Na ions on capacitive behavior of amorphous MnO2. Electrochim Acta 141:286–293

    CAS  Google Scholar 

  23. Lee HJ, Lee JH, Chung S-Y, Choi JW (2016) Enhanced pseudocapacitance in multicomponent transition-metal oxides by local distortion of oxygen octahedra. Angew Chem Int Ed 55:3958–3962

    CAS  Google Scholar 

  24. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem 647:60–65

    CAS  Google Scholar 

  25. Guo B, Li T, Hu H (2016) Anodic deposition of CoOOH films with excellent performance for electrochemical capacitors. J Appl Electrochem 46:403–421

    CAS  Google Scholar 

  26. Liu H, Ho KH, Hu Y, Ke Q, Mao L, Zhang Y, Wang J (2015) Doping cobalt hydroxide nanowires for better supercapacitor performance. Acta Mater 84:20–28

    CAS  Google Scholar 

  27. Choi J, Kim M, Kim J (2018) Correlation between the mesoporous carbon sphere with Ni(OH)2 nanoparticle contents for high-performance supercapacitor electrode. Ionics 24:815–825

    CAS  Google Scholar 

  28. Li X, Li J, Deng F, Kang F (2018) Enhanced electrochemical performance of nitrogen-doped graphene and poly Ni(salen) composite electrodes for supercapacitors. Ionics 24:3143–3153

    CAS  Google Scholar 

  29. Yu X, Park SK, Yeon S-H, Park HS (2015) Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. J Power Sources 278:484–489

    CAS  Google Scholar 

  30. Chen Y, Wang J-W, Shi X-C, Chen B-Z (2015) Electrochemical fabrication of porous manganese–cobalt oxide films for electrochemical capacitors. J Appl Electrochem 45:495–501

    CAS  Google Scholar 

  31. Zhang J, Ma J, Jiang J, Zhao XS (2010) Synthesis and capacitive properties of carbonaceous sphere@MnO2 rattle-type hollow structures. J Mater Res 25:1476–1484

    CAS  Google Scholar 

  32. Lee M-T, Chang J-K, Tsai W-T, Lin C-K (2008) In situ X-ray absorption spectroscopic studies of anodically deposited binary Mn-Fe mixed oxides with relevance to pseudocapacitance. J Power Sources 178:476–482

    CAS  Google Scholar 

  33. Haoshen Z, Hosono E, Fujihara S, Honma I, Ichihara M (2006) Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. J Power Sources 158:779–783

    Google Scholar 

  34. Wang M, Ren W, Zhao Y, Cui H (2014) Synthesis of nanostructured CoOOH film with high electrochemical performance for application in supercapacitor. J Nanopart Res 16:2181

    Google Scholar 

  35. Dubal DP, Jagadale AD, Patil SV, Lokhande CD (2012) Simple route for the synthesis of supercapacitive Co-Ni mixed hydroxide thin films. Mater Res Bull 47:1239–1245

    CAS  Google Scholar 

  36. Chen Y, Zhou J, Maguire P, O'Connell R, Schmitt W, Li Y, Yan Z, Zhang Y, Zhang H (2016) Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation. Sci Rep 6:20704

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nieto-Ramos S, Tomar MS, Hernandez S, Aliev F (2000) Thin films of lithium intercalation complex oxides for cathodes. Thin Solid Films 377–378:745–749

    Google Scholar 

  38. Pauporte T, Mendoza L, Cassir M, Bernard MC, Chivot J (2005) Direct low-temperature deposition of crystallized CoOOH films by potentiostatic electrolysis. J Electrochem Soc 152:C49–C53

    CAS  Google Scholar 

  39. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159:345–356

    CAS  Google Scholar 

  40. Xu Z, Li X, Li J, Wu L, Zeng Q, Zhou Z (2013) Effect of CoOOH loading on the photoelectrocatalytic performance of WO3 nanorod array film. Appl Surf Sci 284:285–290

    CAS  Google Scholar 

  41. Yuan L, Lu X-H, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, Hu C, Tong Y, Zhou J, Wang ZL (2011) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    PubMed  Google Scholar 

  42. Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J Mater Chem A 1:8836–8843

    CAS  Google Scholar 

  43. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38

    CAS  Google Scholar 

  44. Jena A, Munichandraiah N, Shivashankar SA (2012) Morphology controlled growth of meso-porous Co3O4 nanostructures and study of their electrochemical capacitive behavior. J Electrochem Soc 159:A1682–A1689

    CAS  Google Scholar 

  45. Chan PY, Majid SR (2018) Synthesis and electrochemical characterization of amorphous manganese-nickel oxide as supercapacitor electrode material. Ionics 24:539–548

    CAS  Google Scholar 

  46. Bhattacharya P, Joo T, Kota M, Park HS (2018) CoO nanoparticles deposited on 3D macroporous ozonized RGO networks for high rate capability and ultralong cyclability of pseudocapacitors. Ceram Int 44:980–987

    CAS  Google Scholar 

  47. Hu X, Lin X, Ling Z, Li Y, Fu X (2014) Fabrication and characteristics of galvanostatic electrodeposited MnO2 on porous nickel from etched aluminium. Electrochim Acta 138:132–138

    CAS  Google Scholar 

  48. He Z, Yanrong Z (2014) Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate. J Power Sources 272:866–879

    Google Scholar 

  49. Kazemi SH, Kiani MA, Ghaemmaghami M, Kazemi H (2016) Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim Acta 197:107–116

    CAS  Google Scholar 

  50. Huang L, Yao X, Yuan L, Yao B, Gao X, Wan J, Zhou P, Xu M, Wu J, Yu H, Hu Z, Li T, Li Y, Zhou J (2018) 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater 12:191–196

    Google Scholar 

  51. Kumar A, Sanger A, Kumar A, Kumar Y, Chandra R (2016) Sputtered synthesis of MnO2 nanorods as binder free electrode for high performance symmetric supercapacitors. Electrochim Acta 222:1761–1769

    CAS  Google Scholar 

  52. Li Z, An Y, Hu Z, An N, Zhang Y, Guo B, Zhang Z, Yang Y, Wu H (2016) Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J Mater Chem A 4:10618–10626

    CAS  Google Scholar 

  53. Wang D, Min Y, Yu Y, Peng B (2014) A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J Colloid Interface Sci 417:270–277

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the Doctoral Fund of the Southwest University of Science and Technology (08ZX7113) and the Scientific and Technological Innovation Team Fund of Southwest University of Science and Technology (18LZXT10) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruishi Xie, Yongjun Ma or Jichuan Huo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 18.1 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Li, T., Liu, H. et al. Fabrication, structure, electrochemical properties, and enhanced pseudocapacitive performance of cobalt oxyhydroxide films via a simple strategy. Ionics 26, 423–439 (2020). https://doi.org/10.1007/s11581-019-03190-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03190-3

Keywords

Navigation