Skip to main content

Advertisement

Log in

Supercapacitor electrodes from activation of binderless green monoliths of biomass self-adhesive carbon grains composed of varying amount of graphene additive

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Binderless electrodes of activated carbon monoliths (ACMs) and its composites with graphene are prepared by carbonization and activation of green monoliths consisting of self-adhesive carbon grains and 0–10 wt% KOH-treated graphene. Compared with ACMs, the optimized composite containing 6 wt% graphene exhibits more ordered micro-structures with increased crystallite height, and graphitic sp2 carbons (I D /I G  = 0.49 vs. 0.91) along with enhanced porosity; as revealed by X-ray diffraction, Raman, and N2 adsorption-desorption studies. These modifications lead to increased electrical conductivity (13 vs. 9 S cm−1) through improved interconnections of carbon particles by graphene, and surface area ~ (800 vs. 456 m2 g−1) due to increased inter-particle spacing. Further, contrary to ACMs, the composite electrodes can offer faster delivery of energy in almost 50% less response time (5 vs. 8 s) due to reduced equivalent series resistance (1.67 vs. 2.65 Ω) and charge transfer resistance (0.55 vs. 1.33 Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu A, Pham DT, Lee J, Kim S, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

  4. Yang CS, Jang YS, Jeong HK (2014) Bamboo-based activated carbon for supercapacitor applications. Curr Appl Phys 14:1616–1620

    Article  Google Scholar 

  5. Tey JP, Arof AK, Yarmo MA, Careem MA (2015) Activated carbon from bio - wastes of durian fruits as active material for electrodes of electric double-layer capacitors. J New Mat Electr Sys 18:1–9

    Google Scholar 

  6. Feng JC, Zhao JC, Liu P, Tang BH, Xu JL (2010) Preparation and electrochemical characterization of ordered mesoporous carbon/PbO host-guest composite electrode materials for supercapacitor. J New Mat Electr Sys 13:321–326

    CAS  Google Scholar 

  7. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Adv Rev 3:424–473

  8. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  Google Scholar 

  9. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energ Environmen Sci 7:1250–1280

    Article  CAS  Google Scholar 

  10. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustainable Energy Rev 58:1189–1206

    Article  Google Scholar 

  11. Wen Y, Yanyan F, Dan X, Hongyan H (2015) Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. Int J Energ Res 39:805–811

    Article  Google Scholar 

  12. Korenblit Y, Kajdos A, West WC, Smart MC, Brandon EJ, Kvit A, Jagiello J, Yushin G (2012) In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv Funct Mater 22:1655–1662

    Article  CAS  Google Scholar 

  13. Zhu BY, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide : synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  14. Eda BG, Chhowalla M (2010) Chemically derived graphene oxide : towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415

    Article  CAS  Google Scholar 

  15. Geim AK, Novoselov KS (2007) The rise of graphene. Progress Article 6:183–191

    CAS  Google Scholar 

  16. Suleman M, Kumar Y, Hashmi SA (2015) High-rate supercapacitive performance of GO/r-GO electrodes interfaced with plastic-crystal-based flexible gel polymer electrolyte. Electrochim Acta 182:995–1007

    Article  CAS  Google Scholar 

  17. Dong X, Xu H, Wang X, Huang Y, Chan-park MB, Zhang H (2012) 3D Graphene À cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  18. Zhu J, Cheng C, Yang X, Wang Y, Qiu L, Li D (2013) Dynamic electrosorption analysis as an effective means to characterise the structure of bulk graphene assemblies. Chem Eur J 19:3082–3089

    Article  CAS  Google Scholar 

  19. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049

    Article  CAS  Google Scholar 

  20. Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y (2012) High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Adv 2:7747–7753

    Article  CAS  Google Scholar 

  21. Jiang L, Yan J, Zhou Y, Hao L, Xie R, Jiang L, Yi B (2013) Activated carbon/graphene composites with high-rate performance as electrode materials for electrochemical capacitors. J Solid State Electr 17:2949–2958

    Article  CAS  Google Scholar 

  22. Xie Q, Bao R, Xie C, Zheng A, Wu S, Zhang Y, Zhang R, Zhao P (2016) Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. J Power Sources 317:133–142

    Article  CAS  Google Scholar 

  23. Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290–296

    Article  CAS  Google Scholar 

  24. Wang M, Liu Q, Sun HF, Stach EA, Zhang H, Stanciu L, Xie J (2012) Preparation of high-surface-area carbon nanoparticle/graphene composites. Carbon 50:3845–3853

    Article  CAS  Google Scholar 

  25. Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F (2010) Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48:1731–1737

    Article  CAS  Google Scholar 

  26. Fan X, Yu C, Yang J, Ling Z, Qiu J (2014) Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70:130–141

    Article  CAS  Google Scholar 

  27. Awitdtrus DM, Talib IA, Omar R, Jumali MHH, Taer E, Saman MM (2010) Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes. Sains Malays 39:83–86

    Google Scholar 

  28. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JG, Ishak MM, Dollah BNM, Hashmi SA (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 132:254–261

    Article  CAS  Google Scholar 

  29. Jasni MRM, Deraman M, Hamdan E, Sazali NES, Nor NSM, Ishak MM, Basri NH, Omar R, Othman MAR, Zulkifli R, Daik R, Suleman M (2016) Effect of KOH treated graphene in green monoliths of pre-carbonized biomass fibers on the structure, porosity and capacitance of supercapacitors carbon electrodes. Mater Sci Forum 846:551–558

    Article  Google Scholar 

  30. Jasni MRM, Deraman M, Suleman M, Hamdan E, Sazali NES, Nor NSM, Shamsudin SA (2016) Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes. AIP Conf Proc 1710:300341–300349

    Google Scholar 

  31. Li Y, Zijll MV, Chiang S, Pan N (2011) KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources 196:6003–6006

    Article  CAS  Google Scholar 

  32. Deraman M, Zakaria S, Omar R, Aziz AA (2000) Electrical conductivity of carbon pellets from mixtures of pyropolymer from oil palm bunch and cotton cellulose. Jpn J Appl Phys 39:1236–1238

    Article  Google Scholar 

  33. Deraman M, Omar R, Zakaria S, Mustapa IR, Talib M, Alias N (2002) Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesive carbon grain from oil palm empty fruit bunch. J Mater Sci 37:3329–3335

    Article  CAS  Google Scholar 

  34. Deraman M, Ishak MM, Farma R, Awitdrus TE, Talib IA, Omar R (2011) Binderless composite electrode monolith from carbon nanotube and biomass carbon activated by H2SO4 and CO2 gas for supercapacitor. AIP Conf Proc 1415:175–179

    Article  CAS  Google Scholar 

  35. Taer E, Deraman M, Talib IA, Umar AA, Oyama M, Yunus RM (2010) Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation. Curr Appl Phys 10:1071–1075

    Article  Google Scholar 

  36. Nor NSM, Deraman M, Omar R, Awitdrus FR, Basri NH, Dolah BNM, Mamat NF, Yatim B, Daud MNM (2015) Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches. Energy 79:183–194

    Article  Google Scholar 

  37. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1982) International Union Of Pure Commission On Colloid And Surface Chemistry Including Catalysis * Reporting physisorption data dfor gas/solid systems with special reference to the determination of surface area and porosity. Pure & Appl Chem 57:603–619

    Article  Google Scholar 

  38. Zhang LL, Zhou R, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. J Mater Chem 38:2520–2531

    CAS  Google Scholar 

  39. Tsay KC, Zhang L, Zhang J (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436

    Article  CAS  Google Scholar 

  40. Ban S, Zhang J, Zhang L, Tsay K, Song D, Zou X (2013) Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochim Acta 90:542–549

    Article  CAS  Google Scholar 

  41. Basri NH, Deraman M, Kanwal S, Talib IA, Manjunatha JG, Aziz AA, Farma R (2013) Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass Bioenergy 59:370–379

    Article  CAS  Google Scholar 

  42. Dolah BNM, Deraman M, Othman MAR, Farma R, Taer E, Awitdrus BNH, Talib IA, Omar R, Nor NSM (2014) A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes. Mater Res Bull 60:10–19

    Article  CAS  Google Scholar 

  43. Farma R, Deraman M, Awitdrus TIA, Omar R, Manjunatha JG, Ishak MM, Basri NH, Dolah BNM (2013) Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int Electrochem Sc 8:257–273

    CAS  Google Scholar 

  44. Munz M, Giusca CE, Myers-ward RL, Gaskill DK, Kazakova O (2015) Thickness-dependent hydrophobicity of epitaxial graphene. ACS Nano 9:8401–8411

    Article  CAS  Google Scholar 

  45. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G (2015) Surface and porous characterization of activated carbon prepared from pyrolysis of biomass (rice straw) by two-stage procedure and its applications in supercapacitor electrodes. J Mater Cycles Waste Manage 17:736–747

    Article  CAS  Google Scholar 

  46. Isroi IMM, Millati R, Syamsiah S, Cahyanto MN, Niklasson C, Taherzadeh MJ (2012) Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules 17:14995–15012

    Article  CAS  Google Scholar 

  47. Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C (2011) Chemical engineering research and design preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem Eng Res Des 89:335–340

    Article  CAS  Google Scholar 

  48. Suleman M, Othman MAR, Hashmi SA, Kumar Y, Deraman M, Omar R, Jasni MRM (2017) Activated graphene oxide/reduced graphene oxide electrodes and low viscous sulfonium cation based ionic liquid incorporated flexible gel polymer electrolyte for high rate supercapacitors. J Alloy Compd 695:3376–3392

    Article  CAS  Google Scholar 

  49. Byrne CE, Nagle DC (1991) Carbonization of wood for advanced materials applications. Carbon 35:259–266

    Article  Google Scholar 

  50. Yan X, Liang C, Yun H (2016) KOH-assisted microwave post-treatment of activated carbon for efficient symmetrical double-layer capacitors. Int J Energ Res 41:728–735

    Google Scholar 

  51. Jain A, Tripathi SK (2014) Almond shell-based activated nanoporous carbon electrode for EDLCs. Ionics 21:1391–1398

    Article  Google Scholar 

  52. Sulaiman KS, Mat A, Arof AK (2015) Activated carbon from coconut leaves for electrical double-layer capacitor. Ionics 22:911–918

    Article  Google Scholar 

  53. Deraman M, Zakaria S, Murshidi JA (2001) Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Jpn J Appl Phys 40:3311–3314

    Article  CAS  Google Scholar 

  54. Deraman M, Zakaria S, Husin M, Aziz AA, Ramli R, Mokhtar A, Yusof MNM, Sahri MH (1999) X-ray diffraction studies on fiber of oil palm empty fruit bunch and rubberwood for medium-density berboard. J Mater Sci Lett 8:249–253

    Article  Google Scholar 

  55. Deraman M, Sazali NES, Hanappi MFYM, Tajuddin NSM, Hamdan E, Suleman M, Othman MAR, Omar R, Hashim MA, Basri NH, Nor NSM, Dolah BNM, Noor AM, Jasni MRM (2016) Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application. J Phys Conf Ser 739:120851–120857

    Article  Google Scholar 

  56. Ng CH, Lim HN, Lim YS, Chee WK, Huang NM (2014) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energ Res 39:344–355

    Article  Google Scholar 

  57. Qu D, Shi H (2002) Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 109:99–107

    Article  Google Scholar 

  58. Nor NSM, Deraman M, Suleman M, Jasni MRM, Manjunatha JG, Othman MAR, Shamsudin SA (2017) Supercapacitors using binderless activated carbon monoliths electrodes consisting of a graphite additive and pre-carbonized biomass fibers. Int J Electrochem Sci 12:2520–2539

    Article  CAS  Google Scholar 

  59. Liu D, Jia Z, Wang D (2016) Preparation of hierarchically porous carbon nanosheet composites with graphene conductive scaffolds for supercapacitors: an electrostatic-assistant fabrication strategy. Carbon 100:664–677

    Article  CAS  Google Scholar 

  60. Ma J, Liu Y, Hu Z, Xu Z (2013) Electrochemical synthesis and performance of PANI electrode material for electrochemical capacitor. Ionics 19:1405–1413

    Article  CAS  Google Scholar 

  61. Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R (2016) Hexagonal-like NiCo2O4 nanostructure based high-performance supercapacitor electrodes. Ionics 23:977–984

    Article  Google Scholar 

  62. Wei KC, Lim HN, Huang NM (2014) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energ Res 39:111–119

    CAS  Google Scholar 

  63. Zhou S, Xie Q, Wu S, Huang X, Zhao P (2017) Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes. Ionics 1:1–9

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the grants from the Ministry of Higher Education (FRGS/1/2016/STG07/UKM/02/2), (FRGS/2/2013/ST05/UKM/01/1), and Universiti Kebangsaan Malaysia (DIP-2014-027) and the support of CRIM (Centre for Research and Innovation Management), UKM. The authors are thankful to Mr. Saini for his support in the laboratory work and for the collaborative work of Department of Physics and Astrophysics, University of Delhi, Delhi, India.

Funding information

Authors acknowledge the grants from the Ministry of Higher Education (FRGS/1/2016/STG07/UKM/02/2), (FRGS/2/2013/ST05/UKM/01/1), and Universiti Kebangsaan Malaysia (DIP-2014-027) and the support of CRIM (Centre for Research and Innovation Management), UKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasni, M., Deraman, M., Suleman, M. et al. Supercapacitor electrodes from activation of binderless green monoliths of biomass self-adhesive carbon grains composed of varying amount of graphene additive. Ionics 24, 1195–1210 (2018). https://doi.org/10.1007/s11581-017-2283-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2283-7

Keywords

Navigation