Skip to main content
Log in

In situ, facile synthesis of La0.8Sr0.2MnO3/nitrogen-doped graphene: a high-performance catalyst for rechargeable Li-O2 batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We have successfully devised a simple method to synthesize La0.8Sr0.2MnO3 with nitrogen-doped graphene composites (LSM/NrGO) and investigated their catalytic performance in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Interestingly, the LSM/NrGO composites demonstrate outstanding catalytic performance in ORR, including high limiting current density and superior onset potential, compared to bare LSM nanocrystals or nitrogen-doped graphene, showing a performance close to that of commercial Pt/C. Moreover, Li-O2 batteries assembled based on the LSM/NrGO catalysts exhibited brilliant performance, especially during long-term cycling, where the terminal discharge voltage still exceeded 2.31 V after 360 cycles. The excellent catalytic performance is mainly attributed to the large specific surface area (152.24 m2 g−1) of the materials, which provides many catalytic active sites, and the mesoporous structure (2 to 50 nm), which can facilitate the penetration of oxygen molecules into the surface of the nanoparticles and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    Article  CAS  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nature Mater 11(1):19–29

    Article  CAS  Google Scholar 

  3. Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566

    Article  CAS  Google Scholar 

  4. Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192

    Article  CAS  Google Scholar 

  5. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  6. Kraytsberg A, Ein-Eli Y (2011) Review on Li-air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893

    Article  CAS  Google Scholar 

  7. Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Eng Mater 1(1):34–50

    Article  CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  9. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  10. Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48

    Article  CAS  Google Scholar 

  11. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    Article  CAS  Google Scholar 

  12. Liu Y, Liu Y, Cheng SHS, Yu SC, Nan B, Bian HD, Wang M, Chung CY, Lu ZG (2016) Conformal coating of heterogeneous CoO/Co nanocomposites on carbon nanotubes as efficient bifunctional electrocatalyst for Li-air batteries. Electrochim Acta 219:560–567

    Article  CAS  Google Scholar 

  13. Shang CQ, Li MC, Wang ZY, Wu SF, Lu ZG (2016) Electrospun nitrongen-doped carbon nanofibers encapsulting cobalt nanoparticles as efficient oxygen reduction catalysts. Chem Electro Chem 3(9):1437–1445

    CAS  Google Scholar 

  14. Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. Acs Cata 2(5):844–857

    Article  CAS  Google Scholar 

  15. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49(8):3557–3566

    Article  CAS  Google Scholar 

  16. Liu Y, Liu Y, Shi HH, Wang M, Cheng HS, Bian HD, Kamruzzaman M, Cao LJ, Chung CY, Lu ZG (2016) Cobalt-copper layered double hydroxide nanosheets as high performance bifunctional catalysts for rechargeable lithium-air batteries. J Alloys Compds 688:380–387

    Article  CAS  Google Scholar 

  17. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116

    Article  CAS  Google Scholar 

  18. Lu YC, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051

    Article  CAS  Google Scholar 

  19. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107):63–66

    Article  CAS  Google Scholar 

  20. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chem 3(7):546–550

    Article  CAS  Google Scholar 

  21. Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries. Angew Chem Int Ed 52(14):3887–3890

    Article  CAS  Google Scholar 

  22. Fu Z, Lin X, Huang T, Yu A (2011) Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J Solid State Electrochem 16(4):1447–1452

    Article  Google Scholar 

  23. Jin C, Cao X, Lu F, Yang Z, Yang R (2013) Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. Int J Hydrog Energy 38(25):10389–10393

    Article  CAS  Google Scholar 

  24. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385

    Article  CAS  Google Scholar 

  25. Yang Y, Yin W, Wu S, Yang X, Xia W, Shen Y, Huang Y, Cao A, Yuan Q (2016) Perovskite-type LaSrMnO electrocatalyst with uniform porous structure for an efficient Li-O2 battery cathode. ACS Nano 10(1):1240–1248

    Article  CAS  Google Scholar 

  26. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  27. Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:187–190

    Article  Google Scholar 

  28. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560

    Article  CAS  Google Scholar 

  29. Li Z, Liu Z, Sun H, Gao C (2015) Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem Rev 115(15):7046–7117

    Article  CAS  Google Scholar 

  30. Gao Y, Zhao H, Chen D, Chen C, Ciucci F (2015) In situ synthesis of mesoporous manganese oxide/sulfur-doped graphitized carbon as a bifunctional catalyst for oxygen evolution/reduction reactions. Carbon 94:1028–1036

    Article  CAS  Google Scholar 

  31. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Muellen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  CAS  Google Scholar 

  32. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794

    Article  CAS  Google Scholar 

  33. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51(46):11496–11500

    Article  CAS  Google Scholar 

  34. Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22(2):390–395

    Article  CAS  Google Scholar 

  35. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942

    Article  CAS  Google Scholar 

  36. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  37. Cao YL, Lv FC, Yu SC, Xu J, Yang X, Lu ZG (2016) Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li-O2 batteries. Nanotechnology 27:135703

    Article  CAS  Google Scholar 

  38. Ma R, Xia BY, Zhou Y, Li P, Chen Y, Liu Q, Wang J (2016) Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102:58–65

    Article  CAS  Google Scholar 

  39. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem 2(7):581–587

    Article  CAS  Google Scholar 

  40. Kou R, Shao Y, Mei D, Nie Z, Wang D, Wang C, Viswanathan VV, Park S, Aksay IA, Lin Y, Wang Y, Liu J (2011) Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J Am Chem Soc 133(8):2541–2547

    Article  CAS  Google Scholar 

  41. Zhao D, Xiao Y, Wang X, Gao Q, Cao M (2014) Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 7:124–133

    Article  CAS  Google Scholar 

  42. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    Article  CAS  Google Scholar 

  43. Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed 50(14):3257–3261

    Article  Google Scholar 

  44. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc 135(1):494–500

    Article  CAS  Google Scholar 

  45. Itkis DM, Semenenko DA, Kataev EY, Belova AI, Neudachina VS, Sirotina AP, Haevecker M, Teschner D, Knop-Gericke A, Dudin P, Barinov A, Goodilin EA, Shao-Horn Y, Yashina LV (2013) Reactivity of carbon in lithium-oxygen battery positive electrodes. Nano Lett 13(10):4697–4701

    Article  CAS  Google Scholar 

  46. Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004

    Article  CAS  Google Scholar 

  47. Oh SH, Black R, Pomerantseva E, Lee J-H, Nazar LF (2012) Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nature Chem 4(12):1004–1010

    Article  CAS  Google Scholar 

  48. Zhang L, Zhang X, Wang Z, Xu J, Xu D, Wang L (2012) High aspect ratio gamma-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. Chem Commun 48(61):7598–7600

    Article  CAS  Google Scholar 

  49. Lim HD, Park KY, Song H, Jang EY, Gwon H, Kim J, Kim YH, Lima MD, Robles RO, Lepro X, Baughman RH, Kang K (2013) Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv Mater 25(9):1348–1352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21171060) and the Program for New Century Excellent Talents in University (NCET-12-0643). LZG thanks the National Natural Science Foundation of China (21671096 and 21603094), Shenzhen Peacock Plan (KQCX20140522150815065), the Natural Science Foundation of Shenzhen (JCYJ20150331101823677, JCYJ20150630145302231) and the Science and Technology Innovation Foundation for the Undergraduates of SUSTC (2015x19 and 2015x12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhouguang Lu or Hong Deng.

Electronic supplementary material

ESM 1

(PDF 446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, S., Nan, B. et al. In situ, facile synthesis of La0.8Sr0.2MnO3/nitrogen-doped graphene: a high-performance catalyst for rechargeable Li-O2 batteries. Ionics 23, 2241–2250 (2017). https://doi.org/10.1007/s11581-017-2079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2079-9

Keywords

Navigation