Skip to main content

Advertisement

Log in

Flexible wire-based electrodes exploiting carbon/ZnO nanocomposite for wearable supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A facile and scalable approach is here proposed to fabricate fiber-shaped electrodes and their integration into wearable supercapacitors. Copper wires were used as axial current collector and covered by dip coating with a carbon-based slurry. A gel electrolyte was used both as ionic conductor and separator between the two parallel wire-electrodes. The decoration of the carbon-based active material with ZnO nanoparticles was investigated in order to boost the supercapacitors performance exploiting the pseudocapacitive response of this wide band-gap semiconductor. Composites of ZnO/graphite with different wt.% ZnO (such as 1, 5, 10, 20% of ZnO nanoparticles) were prepared. X-ray powder diffraction and Raman micro spectroscopy served as phase-analytical methods. Field emission scanning electron microscopy technique was used for morphology characterization of the prepared samples. The electrical characterization of the devices showed excellent results both in terms of specific capacitance and cycling and bending stability. The ease of the proposed process can allow its rapid integration in a large-scale production for efficient wearable supercapacitors.

Parallel wire shape supercapacitors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu, A, Davies A, Chen Z (2011) Electrochemical Supercapacitors, in Electrochemical Technologies for Energy Storage and Conversion, Volume 1&2 (eds Liu R-S, Zhang L, Sun X, Liu H, Zhang J), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

  2. Hulicova-J D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  Google Scholar 

  3. Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787

    Article  CAS  Google Scholar 

  4. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518

    Article  CAS  Google Scholar 

  5. Chen G, Wu S, Hui L, Zhao Y, Ye J, Tan Z, Zhu Y (2016) Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Scientific reports 6

  6. Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy & Environmental Science 7(6):1850–1865

    Article  CAS  Google Scholar 

  7. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  8. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors, a review. Nanoscale 5(1):72–88

    Article  CAS  Google Scholar 

  9. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 7(5):1597–1614

    Article  CAS  Google Scholar 

  10. Lamberti A, Fontana M, Bianco S, Tresso E (2016) Flexible solid-state Cu x O-based pseudo-supercapacitor by thermal oxidation of copper foils. Int J Hydrog Energy 41(30):12705–13330

    Article  Google Scholar 

  11. Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, Kaner RB (2015) Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70

    Article  CAS  Google Scholar 

  12. Deng L, Hao Z, Wang J, Zhu G, Kang L, Liu ZH, Wang Z (2013) Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO 2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim Acta 89:191–198

    Article  CAS  Google Scholar 

  13. Clerici F, Fontana M, Bianco S, Serrapede M, Perrucci F, Ferrero S, Lamberti A (2016) In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl Mater Interfaces 8(16):10459–10465

    Article  CAS  Google Scholar 

  14. Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2(28):10776–10787

    Article  CAS  Google Scholar 

  15. Peng S, Rui L, Zilong W, Meijia Q, Zhisheng C, Bodong Z, Hui M, Shaozao T, Chuanxi Z, Wenjie M (2017) Rational design of carbon shell endows TiN@ C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31:32–420

    Article  Google Scholar 

  16. Zhisheng C, Nannan Z, Peng S, Yi H, Chuanxi Z, Hong JF, Xing F, Wenjie M (2016) Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS nano 10(10):9201–9207. doi:10.1021/acsnano.6b05293

  17. Rui L, Zihan Z, Xiang Y, Ying Z, Zilong W, Shaozao T, Chuanxi Z, Wenjie M (2017) Facile synthesis of TiO2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance. J Mater Chem A 5:814–821. doi:10.1039/C6TA08132K

  18. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA et al (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7):5940–5947

    Article  CAS  Google Scholar 

  19. Su F, Miao M (2014) Asymmetric carbon nanotube–MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 25(13):135401

    Article  Google Scholar 

  20. Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5

  21. Lamberti A, Gigot A, Bianco S, Fontana M, Castellino M, Tresso E, Pirri CF (2016) Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors. Carbon 105:649–654

    Article  CAS  Google Scholar 

  22. Keh-C, Lei Z, Jiujun Z, Jiujun Z (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436

    Article  Google Scholar 

  23. Andrea L, Rossana G, Adriano S, Stefano B, Marzia Q, Angelica C, Elena T, Candido FP (2012) Coral-shaped ZnO nanostructures for dye-sensitized solar cell photoanodes. Prog Photovolt Res Appl 22(2):189–197

    Google Scholar 

  24. Cauda V, Stassi S, Lamberti A, Morello M, Fabrizio PC, Canavese G (2015) Leveraging ZnO morphologies in piezoelectric composites for mechanical energy harvesting. Nano Energy 18:212–221

    Article  CAS  Google Scholar 

  25. Garino N, Lamberti A, Gazia R, Chiodoni A, Gerbaldi C (2014) Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes. J Alloys Compd 615:S454–S458

    Article  CAS  Google Scholar 

  26. Alladin J, Samuele P, Alessandro C, Candido FP, Carlo R (2015) Polymer coated ZnO nanowires for memristive devices, nanotechnology (IEEE-NANO), IEEE 15th. International Conference on IEEE 2015

  27. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16-25:R829

    Article  Google Scholar 

  28. Rossana G, Paolo M, Stefano S, Adriano S, Alessandro V, Andrea L, Giancarlo C (2013) Photodetection and piezoelectric response from hard and flexible sponge-like ZnO-based structures. Nano Energy 2(6):1294–1302

    Article  Google Scholar 

  29. Welham NJ, Berbenni V, Chapman PG (2012) Effect of extended ball milling on graphite. J Alloys Compd 349:255–263

    Article  Google Scholar 

  30. Saito H, Yoshikawa T, Bandow S, Tomita M, Hayashi T (1993) Electrochemical properties of multi-wall carbon nanotubes as a novel negative electrode for calcium secondary batteries. Phys Rev B 48(3):1907–1909

    Article  CAS  Google Scholar 

  31. Kawashima Y, Katagiri G (1995) Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys Rev B 52(14):10053–10059

    Article  CAS  Google Scholar 

  32. Alim KA, Fonoberov VA, Shamsa M, Balandin AA (2005) Micro-Raman investigation of optical phonons in ZnO nanocrystals. Appl Phys 97:124313-1-5

    Article  Google Scholar 

  33. Dingshan Y, Qihui Q, Li W, Wenchao J, Kunli G, Jun W, Jie ZY, An C (2014) Emergence of fiber supercapacitors. The Royal Society of Chemistry 44:647–662

    Google Scholar 

  34. Xiaoyan L, Jun W, Fengyan G, Sridhar K, Zaisheng C (2016) Facile fabrication of freestanding three-dimensional composites for supercapacitors. Chem Commun 52(13):2691–2694

    Article  Google Scholar 

  35. Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G (2010) Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B 405:2286–2289

    Article  CAS  Google Scholar 

  36. Yanping Z, Haibo L, Likun P, Ting L, Zhuo S (2009) Capacitive behavior of graphene-ZnO composite film for supercapacitors. Journal of Electroanalutical Chemistry 634:68–71

    Article  Google Scholar 

  37. Ting L, Likun P, Haibo L, Guang Z, Tian L, Xinjuan L, Zhuo S, Ting C, Daniel HC (2001) Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. journal of alloys and compound 509:5488–5492

    Google Scholar 

  38. Meryl DS, Rodney SR (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. energy & environmental science 3:1294–1301

    Article  Google Scholar 

  39. Jeliza SB, Abdelaziz R, Sanjaya DP, Nijem N, Oliver S, Yves JC, Kenneth JB Jr, John PF, Duck JY (2012) Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. J Power Sources 203:227–232

    Article  Google Scholar 

  40. Kristy J, Daniel S, Carlos RP, John KM, Keryn L, Yury G, Dion G (2013) Knitted and screen printed carbon fiber supercapacitors for the application of the wearable electronics. Energy Environ Sci 6:2698

    Article  Google Scholar 

  41. Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Material 25:5965–5970

    Article  CAS  Google Scholar 

  42. Le V, Kim H, Ghosh A, Kim J, Chang J, Vu Q, Pham D, Lee J, Kim S, Lee Y (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amjid Rafique or Andrea Lamberti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, A., Bianco, S., Fontana, M. et al. Flexible wire-based electrodes exploiting carbon/ZnO nanocomposite for wearable supercapacitors. Ionics 23, 1839–1847 (2017). https://doi.org/10.1007/s11581-017-2003-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2003-3

Keywords

Navigation