Skip to main content
Log in

Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of the electrochemical reduction of carbon dioxide (CO2) on the structure and morphology of two different synthesised nano FeTiO3 composite was examined after a fixed-potential bulk electrolysis process. FeTiO3 was used as the cathode, stainless steel (SS) plate as anode and CO2 saturated NaHCO3 and KNO2 as electrolysis. At optimized condition, CO2 is effectively reduced to urea. Fourier transform infrared spectroscopy (FTIR) used to examine the two different synthesis of nano FeTiO3 surfaces to reveal the carbonate ions and urea species during reduction. Ultraviolet–visible spectroscopy (UV) peaks explain the urea function groups present in electrolyte after the CO2 and NO2 reduction. Charge transfer resistance is using Electrochemical Impedance Spectroscopy (EIS) analysis. A systematic Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), two different synthesis of FeTiO3 composite, were performed in order to decouple electrochemical reduction processes of CO2 and NO2 to urea in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kendra Kuhl P, Hatsukade T, Etosha Cave R, David Abram N, Kibsgaard J, Thomas Jaramillo F (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136:14107–14113

  2. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Natl Acad Sci USA 103:15729

    Article  CAS  Google Scholar 

  3. Olah GA, Prakash GAJ (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Am Chem Soc 133:12881

    Article  CAS  Google Scholar 

  4. Barnhart CJ, Benson SM (2013) The energetic implications of curtailing versus storing Lar- and wind-generated electricity. Energy Environ Sci 6:1083

    Article  CAS  Google Scholar 

  5. Gatrell M, Gupta N, Co A (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48:1255–1265

    Article  Google Scholar 

  6. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalyst for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675

  7. Li CW, Ciston J, Kanan MWJ (2014) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Natur 508:504–507

    Article  CAS  Google Scholar 

  8. Kaneco S, Iiba K, Hiei NH, Ohta K, Mizuno T, Suzuki T (1999) Electrochemical reduction of carbon dioxide to ethylene with high faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochim Acta 44:4701–4706

    Article  CAS  Google Scholar 

  9. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45–E49

    Article  CAS  Google Scholar 

  10. Chen Y, Li W, Kanan MWJ (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. Am Chem Soc 134:19969–19972

    Article  CAS  Google Scholar 

  11. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low over potentials. Sci 334:643–644

    Article  CAS  Google Scholar 

  12. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao A (2014) Selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:3242

    Google Scholar 

  13. Zhu W, Michalsky R, Metin O, Lv H, Guo S, Wright CJ, Sun X, Peterson AA (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135:16833–16836

    Article  CAS  Google Scholar 

  14. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B, Haasch A, Abiade R, Yarin J, Salehi-Khojin AL (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819

    Google Scholar 

  15. Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J Electroanal Chem 387:143

    Article  Google Scholar 

  16. Selvam M, Saminathan K, Siva P, Saha P, Rajendran V (2016) Corrosion behavior of Mg/graphene composite in aqueous electrolyte. Mater Chem Phys xxx. 1–8

  17. Piasek Z, Urbanski T (1962) The infra-red absorption spectrum and structure of urea. Serie des sciences chlmique X:3

  18. Madhurambal G, Mariappan M, Mojumdar SC (2010) Thermal, UV and FTIR spectral studies of urea–thiourea zincchloride single crystal. J Therm Anal Calorim 100:763–768

    Article  CAS  Google Scholar 

  19. Gao B, Kim YJ, Chakraborty AK, Lee WI (2008) Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation. Appl Catal B Environ 202–207. doi:10.1016/j.apcatb.2008.02.017

  20. Mona J, Kale SN, Gaikwad AB, Muugan AV, Ravi V (2006) Chemical methods to synthesize FeTiO3 powders. Mater Lett 60:1425–1427

  21. Shibata M, Furuya N (2001) Electrochemical synthesis of urea at gas-diffusion electrodes part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. Journal of J Electroanal Chem 507:177–184

    Article  CAS  Google Scholar 

  22. Sanchez J, Augustynski J (1979) X-ray photoelectron spectroscopic study of the interaction of various anions with the oxide-covered titanium metal. J electroanal chem interfacial electrochem 103:423

    Article  CAS  Google Scholar 

  23. Yang H, Gu Y, Deng Y, Shi F (2002) Electrochemicalactivation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mildreaction conditions. Chem Commun 274–275. doi:10.1039/B108451H

  24. Shibata M, Yoshida K, Furuya NJ (1998) Electrochemical synthesis of urea at gas-diffusion electrodes: IV. Simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts. J Electrochem Soc 145:2348–2353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periasamy Prabu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siva, P., Prabu, P., Selvam, M. et al. Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface. Ionics 23, 1871–1878 (2017). https://doi.org/10.1007/s11581-017-1985-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1985-1

Keywords

Navigation