Skip to main content
Log in

Capacitive properties of the hydrophobic [2-(methacryloyloxy)ethyl]-trimethyl ammonium nonafluoro-1-butanesulfonate poly(ionic liquid) thin film

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The capacitive behavior of the hydrophobic fluorinated polymeric ionic liquid, poly[2-(methacryloyloxy)ethyl]-trimethyl ammonium nonafluoro-1-butanesulfonate (poly-IL), has been investigated by current-voltage (C-V) measurements and electrochemical impedance spectroscopy (EIS) using a cell featured by a ITO/poly-IL/Al sandwich structure. The data were collected in the temperature range between 30 and 60 °C. The Nyquist plot shows a slope variation that indicates a moderate increasing of the ions mobility with temperature. The Bode diagram reveals that the sample exhibits a capacitive behavior below 104 Hz with no redox processes at the electrodes as confirmed by the C–V curves. The material shows a relatively high thermal stability, probably due to its polymeric nature making the capacitor almost insensitive to the variation of the operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic liquids materials for the electrochemical challenges of the future. Nature Mater 8:621–629. doi:10.1038/nmat2448

    Article  CAS  Google Scholar 

  2. Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Ionic liquids for energy, materials, and medicine. Chem Commun 50:9228–9250. doi:10.1039/C4CC02021A

    Article  CAS  Google Scholar 

  3. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliot GD, Davis JH Jr, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250. doi:10.1039/C3EE42099J

    Article  CAS  Google Scholar 

  4. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164. doi:10.1039/B103275P

    Article  CAS  Google Scholar 

  5. Appetecchi GB, Scaccia S, Tizzani C, Alessandrini F, Passerini S (2006) Synthesis of hydrophobic ionic liquids for electrochemical applications. J Electrochem Soc 153:A1685-A1691b. doi: 10.1149/1.2213420

  6. Cardiano P, Mineo PG, Neri F, Lo Schiavo S, Piraino P (2008) A new application of ionic liquids: hydrophobic properties of tetraalkylammonium-based poly(ionic)liquids. J Mat Chem 18:1253–1260. doi:10.1039/B801227J

    Article  CAS  Google Scholar 

  7. Bates ED, Mayton RD, Ntai I, Davis JH Jr (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927. doi:10.1021/ja017593d

    Article  CAS  Google Scholar 

  8. Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159. doi:10.1021/ar9001747

    Article  CAS  Google Scholar 

  9. Mineo PG, Livoti L, Giannetto M, Gulino A, Lo Schiavo S, Cardiano P (2009) Very fast CO2 response and hydrophobic properties of novel poly(ionic liquid)s. J Mater Chem 19:8861–8870. doi:10.1039/B912379B

    Article  CAS  Google Scholar 

  10. Mineo PG, Livoti L, Lo Schiavo S, Cardiano P (2012) Fast and reversible CO2 quartz crystal microbalance response of vinylimidazolium-based poly(ionic liquid)s. Pol Adv Technol 23:1511–1519. doi:10.1002/pat.2076

    Article  CAS  Google Scholar 

  11. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327 . doi:10.1039/B601395Cand references therein

    Article  CAS  Google Scholar 

  12. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036. doi:10.1016/j.progpolymsci.2013.04.002

    Article  CAS  Google Scholar 

  13. Shaplov AS, Marcilla R, Mecerreys D (2015) Recent advances in innovative polymer electolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34 . doi:10.1016/j.electacta.2015.03.038and references therein

    Article  CAS  Google Scholar 

  14. Cardiano P, Lazzara G, Manickam S, Mineo P, Milioto S, Lo Schiavo S (2012) POSS-tetraalkylammonium salts: a new class of ionic liquids. Eur J Inorg Chem 34:5668–5676. doi:10.1002/ejic.201200874

    Article  Google Scholar 

  15. Castriciano MA, Leone N, Cardiano P, Manickam S, Monsù Scolaro L, Lo Schiavo S (2013) A new supramolecular polyhedral oligomeric silsesquioxanes (POSS)-porphyrin nanohybrid: synthesis and spectroscopic characterization. J Mater Chem C 1:4746–4753. doi:10.1039/c3tc30532e

    Article  CAS  Google Scholar 

  16. Cardiano P, Fazio E, Lazzara G, Manickam S, Milioto S, Neri F, Mineo PG, Piperno A, Lo Schiavo S (2015) Highly untangled multiwalled carbon nanotubes@polyhedral oligomeric silsesquioxane ionic hybrids: synthesis, characterization and nonlinear optical properties. Carbon 86:325–337. doi:10.1016/j.carbon.2015.01.047

    Article  CAS  Google Scholar 

  17. Zailani NAM, Latif FA, Ali AMM, Zainuddin LW, Kamaruddin R, Yahya MZA (2016) Effect of ionic liquid incarceration during free radical polymerization of PMMA on its structural and electrical properties. Ionics. doi:10.1007/s11581-016-1827-6

    Google Scholar 

  18. Francis KA, Liew CW, Ramesh S, Ramesh K, Ramesh S (2016) Ionic liquid enhanced magnesium-based polymer electrolytes for electrical double-layer capacitors. Ionics 22:919. doi:10.1007/s11581-015-1619-4

    Article  CAS  Google Scholar 

  19. Kimura K, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015) Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics 21:895. doi:10.1007/s11581-015-1370-x

    Article  CAS  Google Scholar 

  20. Dong Z, Zhang Q, Yu C, Peng J, Ma J, Ju X, Zhai M (2013) Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics 19:1587. doi:10.1007/s11581-013-0905-2

    Article  CAS  Google Scholar 

  21. Xu W, Ledin PA, Shevchenko VV, Tsukruk VV (2015) Architecture, assembly, and emergency applications of branched functional polyelectrolytes and poly(ionic liquid)s. ACS Appl Mater Interfaces 7:12570–12596. doi:10.1021/acsami.5b01833

    Article  CAS  Google Scholar 

  22. Tiruye GA, Munoz-Torrero D, Palma J, Anderson M, Marcilla R (2015) All-solid state supercapacitors operating at 3.5 V by using ionic liquids based polymer electrolytes. J Power Sources 279:472–480. doi:10.1016/j.jpowsour.2015.01.039

    Article  Google Scholar 

  23. Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1:3372–3378. doi:10.1039/c2ta01347a

    Article  CAS  Google Scholar 

  24. Misra R, McCarthy M, Hebard AF (2007) Electric field gating with ionic liquids. App Phys Lett 90:052905. doi:10.1063/1.2437663

    Article  Google Scholar 

  25. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. doi:10.1039/C1CS15060J

    Article  CAS  Google Scholar 

  26. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  27. Lee KH, Zhang S, Lodge TP, Frisbie CD (2011) Electrical impedance of spin-coatable ion gel films. J Phys Chem B 115:3315–3321. doi:10.1021/jp110166u

    Article  CAS  Google Scholar 

  28. Liew C-W, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energ 39:2953–2963. doi:10.1016/j.ijhydene.2013.06.061

    Article  CAS  Google Scholar 

  29. Choi JH, Gu Y, Hong K, Xie W, Frisbie CD, Lodge TP (2014) High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. ACS Appl Mater Interfaces 6:19275–19281. doi:10.1021/am505298q

    Article  CAS  Google Scholar 

  30. Rafik F, Gualous H, Gallay R, Crausaz A, Berthon A (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934. doi:10.1016/j.jpowsour.2006.12.021

    Article  CAS  Google Scholar 

  31. Cho JH, Lee J, He Y, Kim BS, Lodge TP, Frisbie CD (2008) High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv Mater 20:686–690. doi:10.1002/adma.200701069

    Article  CAS  Google Scholar 

  32. Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056. doi:10.1002/adfm.200600111

    Article  CAS  Google Scholar 

  33. Fujimoto T, Awaga K (2013) Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys 15:8983–9006. doi:10.1039/C3CP50755F

    Article  CAS  Google Scholar 

  34. Zhang S, Lee KH, Frisbie CD, Lodge TP (2011) Ionic conductivity, capacitance, and viscoelastic properties of block copolymer-based ion gels. Macromolecules 44:940–949. doi:10.1021/ma102435a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Cardiano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patanè, S., Triolo, C., Cardiano, P. et al. Capacitive properties of the hydrophobic [2-(methacryloyloxy)ethyl]-trimethyl ammonium nonafluoro-1-butanesulfonate poly(ionic liquid) thin film. Ionics 23, 1481–1487 (2017). https://doi.org/10.1007/s11581-017-1971-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1971-7

Keywords

Navigation