Skip to main content
Log in

Research status in preparation of FePO4: a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The cathode is the most important component of a lithium-ion battery. The olivine structure lithium iron phosphate (LiFePO4) with its numerous appealing features, such as high theoretical capacity, acceptable operating voltage, increased safety, environmental benignity, and low cost, has attracted extensive interest as a potential cathode material for Li-ion batteries. As a precursor, FePO4 can be used to produce LiFePO4 on a large scale with high bulk density, discharge rate, and capacity. This can be realized by controlling the crystal size and morphology of FePO4. The characteristics, structure, and synthesis methods of FePO4 are discussed in this review. The relative merits of these synthetic methods, as well as some suggestions on how to improve them, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xiong LL, Xu YL, Tao T et al (2012) Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J Power Sources 199:214–219

    Article  CAS  Google Scholar 

  2. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  3. Seung SH, Chang GC, Kyu-Sung P (2011) Stabilizing LiCoO2 electrode with an overlayer of LiNi0.5Mn1.5O4 by using a Gravure printing method. Electrochem Commun 13(3):279–283

    Article  Google Scholar 

  4. Arumugam D, Kalaignan GP (2011) Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications. Thin Solid Films 520:338–343

    Article  CAS  Google Scholar 

  5. Grigorova E, Mandzhukova TS, Khristov M et al (2011) Soft mechanochemically assisted synthesis of nano-sized LiCoO2 with a layered structure. J Mater Sci 46:7106–7113

    Article  CAS  Google Scholar 

  6. Zhao CH, Kang WP, Zhao SQ et al (2011) Hydrazine–hydrothermal synthesis of pure-phase O-LiMnO2 for lithium-ion battery application. Micro Nano Lett 6(10):820–822

    Article  CAS  Google Scholar 

  7. Shan YX, Wang QC, Meng QZ (2010) Research progress on lithium iron phosphate as lithium ion battery cathode material. Sci Technol Chem Ind 18(3):80–82

    CAS  Google Scholar 

  8. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargable lithium batteries. J Electrochem Soc 144:1188–1190

    Article  CAS  Google Scholar 

  9. Zhang W-J (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196:2962–2970

    Article  CAS  Google Scholar 

  10. Zhao Z-w, Si X-f, Liang X-x et al (2013) Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/FePO4 structures. Trans Nonferrous Metals Soc China 23:1157–1164

    Article  CAS  Google Scholar 

  11. Zhang Y, Huo Q-y, Du P-p et al (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162:1315–1326

    Article  CAS  Google Scholar 

  12. Purwadi A, Dozeno J, Heryana N (2013) Testing performance of 10 kW BLDC motor and LiFePO4 battery on ITB-1 electric car prototype. Procedia Technol 11:1074–1082

    Article  Google Scholar 

  13. Yoon M-S, Islam M, Ur S-C (2013) The role of impurities on electrochemical properties of LiFePO4 cathode material. Ceram Int 39:S647–S651

    Article  CAS  Google Scholar 

  14. He L, Liu X, Zhao Z (2013) Non-isothermal kinetics study on synthesis of LiFePO4 via carbothermal reduction method. Thermochim Acta 566:298–304

    Article  CAS  Google Scholar 

  15. Jung J, Cho M, Zhou M (2013) Ab initio study of the fracture energy of LiFePO4/FePO4 interfaces. J Power Sources 243:706–714

    Article  CAS  Google Scholar 

  16. Vediappan K, Guerfi A, Gariépy V et al (2014) Stirring effect in hydrothermal synthesis of nano C-LiFePO4. J Power Sources 266:99–106

    Article  CAS  Google Scholar 

  17. Ren Y, Bruce PG (2012) Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries. Electrochem Commun 17:60–62

    Article  CAS  Google Scholar 

  18. Lv Y-J, Long Y-F, Su J et al (2014) Synthesis of bowl-like mesoporous LiFePO4/C composites as cathode materials for lithium ion batteries. Electrochim Acta 119:155–163

    Article  CAS  Google Scholar 

  19. Wu Y-F, Liu Y-N, Guo S-W (2014) Hierarchical carbon-coated LiFePO4 nano-grain microspheres with high electrochemical performance as cathode for lithium ion batteries. J Power Sources 256:336–344

    Article  CAS  Google Scholar 

  20. Zhao Z, Si X, Liu X et al (2013) Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy 133:75–83

    Article  CAS  Google Scholar 

  21. Gim J, Song J, Nguyen D et al (2014) A two-step solid state synthesis of LiFePO4/C cathode with varying carbon contents for Li-ion batteries. Ceram Int 40:1561–1567

    Article  CAS  Google Scholar 

  22. Tan L, Zhang L, Sun Q et al (2013) Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures. Electrochim Acta 111:802–808

    Article  CAS  Google Scholar 

  23. Zhang Y, Wu L, Zhao J et al (2014) A facile precursor-separated method to synthesize nano-crystalline LiFePO4/C cathode materials. J Electroanal Chem 719:1–6

    Article  CAS  Google Scholar 

  24. Xing Y, He Y-B, Li B, Chu X, Chen H, Ma J, Du H, Kang F (2013) LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochim Acta 109:512–518

    Article  CAS  Google Scholar 

  25. Liu X, Chen X, Zhao Z, Liang X (2014) Effect of Na+ on Li extraction from brine using LiFePO4/FePO4 electrodes. Hydrometallurgy 146:24–28

    Article  CAS  Google Scholar 

  26. Liu S, Wang H (2014) WO2 modified LiFePO4/C cathode materials with improved electrochemical performance synthesized by in-situ synthesis method. Mater Lett 122:151–154

    Article  CAS  Google Scholar 

  27. Mi CH, Cao GS, Zhao XP (2005) One-step solid-state synthesis and high-temperature electrochemical performance of carbon coated LiFePO4 cathode. Chin J Inorg Chem 4:556–560

    Google Scholar 

  28. Kinomura N, Shimada M, Koizumi M et al (1976) Synthesis of a high pressure phase of FePO4. Mater Res Bull 11(5):457–460

    Article  CAS  Google Scholar 

  29. Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Anorg Allg Chem 632:1598–1605

    Article  CAS  Google Scholar 

  30. Scaccia S, Carewska M, Prosini PP (2004) Thermoanalytical study of iron(III) phosphate obtained by homogeneous precipitation from different media. Thermochim Acta 413:81–86

    Article  CAS  Google Scholar 

  31. Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P et al (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529

    Article  CAS  Google Scholar 

  32. Delacourt C, Rodríguez-Carvajal J, Schmitt B, Tarascon JM, Masquelier C (2005) Crystal chemistry of the olivine-type LixFePO4 system (0 ≤ x ≤ 1) between 25 and 370 °C. Solid State Sci 7:1506–1516

    Article  CAS  Google Scholar 

  33. Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochem Solid-State Lett 10:A134–A138

    Article  CAS  Google Scholar 

  34. Aliounae N, Badeche T, Gagou Y et al (2000) Synthesis and phase transitions of iron phosphate. Ferroelectrics 241(1):255–262

    Article  Google Scholar 

  35. Okadaa S, Yamamotoa T, Okazaki Y et al (2005) Cathode properties of amorphous and crystalline FePO4. J Power Sources 146:570–574

    Article  Google Scholar 

  36. Anderson AS, Thomas JO (2010) The source of first cycle capacity loss in LiFePO4. J Power Sources 97–98:498–502

    Google Scholar 

  37. Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid-State Lett 9:A295–A298

    Article  CAS  Google Scholar 

  38. Ming T, Craig WC, Yet-Ming C (2010) Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines. Annu Rev Mater Res 40:501–529

    Article  Google Scholar 

  39. Saiful IM, Daniel JD, Craig AJF et al (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092

    Article  Google Scholar 

  40. Xu YB, Lu YJ, Yin P et al (2008) A versatile method for preparing FePO4 and study on its electrode performance in lithium ion batteries. J Mater Process Technol 204:513–519

    Article  CAS  Google Scholar 

  41. Qian LC, Xia Y, Zhang WK et al (2012) Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials. Microporous Mesoporous Mater 152:128–133

    Article  CAS  Google Scholar 

  42. Wang ZX, Wu L, Li XH et al (2008) Preparation of precursor and performance of LiFePO4. J Funct Mater 4(39):614–617

    Google Scholar 

  43. Zhang MF, Hong JH, Yuan LJ et al (2009) Kinetics of dehydration of FePO4·4H2O in air. Chin J Inorg Chem 25(6):1022–1025

    CAS  Google Scholar 

  44. Boonchom B, Danvirutai C (2007) Thermal decomposition kinetics of FePO4·3H2O precursor to synthetize spherical nanoparticles FePO4. Ind Eng Chem Res 46:9071–9076

    Article  CAS  Google Scholar 

  45. Boonchom B, Puttawong S (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Physica B 405:2350–2355

    Article  CAS  Google Scholar 

  46. Okawa H, Yabuki J, Kawamura Y et al (2008) Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method. Mater Res Bull 43:1203–1208

    Article  CAS  Google Scholar 

  47. Prosini PP, LiSi M, Scaccia S et al (2002) Synthesis and characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries. J Electrochem Soc A149:297–300

    Article  Google Scholar 

  48. Chang JY, Zhang JY, Feng T (2007) Preparation and performance test of FePO4 precursor for high density LiFePO4. J Yellow River Conservancy Tech Inst 23(3):51–54

    Google Scholar 

  49. Wang X, Yang XH, Zheng HG et al (2005) Synthesis and electrochemical performance of amorphous hydrated iron phosphate nanoparticles. J Cryst Growth 274:214–217

    Article  CAS  Google Scholar 

  50. Song YN, Yang SF, Zavalij PY et al (2002) Temperature-dependent properties of FePO4 cathode materials. Mater Res Bull 37:1249–1257

    Article  CAS  Google Scholar 

  51. Hu GR, Zhou YL, Peng ZD et al (2007) Preparation and performance of FePO4 precursor for LiFePO4. Battery Bimonthly 37(5):339–341

    CAS  Google Scholar 

  52. Jiang DP, Zhang XJ, Lu SG et al (2011) Research on process of preparation and performance of iron phosphate as precusor of lithium iron phosphate. Rare Metals 30:52–54

    Article  CAS  Google Scholar 

  53. Ma GC, Ting SW, Li Q et al (1993) Studies on synthesis and properties of iron(III) phosphate. J Hebei Univ (Sci Technol) 13(4):54–57

    Google Scholar 

  54. Xia JP, Deng XC, Wang LL (2010) Influence of synthesis time on the properties of LiFePO4/C composites with self-produced FePO4 as iron source. Chin Battery Ind 15(6):354–358

    CAS  Google Scholar 

  55. Lei M, Ying JR, Jiang CY et al (2006) Preparation and characteristic of high-density spherical LiFePO4. Chin J Power Sources 30(1):11–13

    CAS  Google Scholar 

  56. Cao Y, Wang ZG, Yang H (2011) Synthesis and electrochemical properties of spherical LiFePO4 with various particle sizes as cathode material for lithium ion batteries. J Funct Mater 3(42):448–451

    Google Scholar 

  57. Zhu YM, Tang SZ, Shi HH et al (2014) Synthesis of FePO4.xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method. Ceram Int 40:2685–2690

    Article  CAS  Google Scholar 

  58. Gong FZ, Yi JH, Zhou LY et al (2009) Preparation of two kinds of FePO4 powders with different morphologies and electrochemical properties of LiFePO4. J Guangxi Univ Nat Sci Ed 34(6):731–735

    CAS  Google Scholar 

  59. Mal K, Bhaumik A, Matsukata M et al (2006) Syntheses of mesoporous hybrid iron oxophenyl phosphate, iron oxophosphate, and sulfonated oxophenyl phosphate. Ind Eng Chem Res 45:7748–7751

    Article  CAS  Google Scholar 

  60. Guo XF (2000) Preparation, characterization and catalytic properties of nanoparticles and mesostructured materials. Nanjing University, Nanjing

    Google Scholar 

  61. Lu YJ, Xu YB, Yang RD et al (2007) A versatile method for preparing FePO4 as a promising electrode material for rechargeable lithium batteries. J Lanzhou Univ (Nat Sci) 43(4):144–146

    Google Scholar 

  62. Zhu SM, Zhou HS, Hibino M et al (2004) Synthesis of hexagonal mesostructured FePO4 using cationic surfactant as the template. Chem Lett 33(6):774–775

    Article  CAS  Google Scholar 

  63. Shi ZC, Attia A, Ye WL et al (2008) Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries. Electrochim Acta 53:2665–2673

    Article  CAS  Google Scholar 

  64. Wang M, Xue YH, Zhang KL et al (2011) Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4. Electrochim Acta 56:4294–4298

    Article  CAS  Google Scholar 

  65. Zhou WJ, He W, Zhang XD et al (2009) Biosynthesis of iron phosphate nanopowders. Powder Technol 194:106–108

    Article  CAS  Google Scholar 

  66. Cao F, Li DX (2010) Biotemplate synthesis of monodispersed iron phosphate hollow microspheres. Bioinspir Biomim 5:1748–3182

    Article  Google Scholar 

  67. Chen YK, Okada S, Yamaki J-i (2002) Preparation of ferri phosphate and its application to lithium battery. J Huaqiao Univ (Nat Sci) 23(4):407–411

    CAS  Google Scholar 

  68. Wu YL, Pu WH, Jiang CY et al (2012) Synthesis of nano FePO4 and electrochemical characterization of composite cathode material LiFePO4/C. J Inorg Mater 27(4):422–426

    Article  CAS  Google Scholar 

  69. Delacourt C, Wurm C, Morcrette M et al (2003) Synthesis and thermal behavior of crystalline hydrated iron(III) phosphates of interest as positive electrodes in Li batteries. Chem Mater 15(26):5051–5058

    Article  Google Scholar 

  70. Fan W (2009) Synthesis and electrochemical characterization of FePO4 by a solid state reaction at low-heating temperature. Nanjing Normal University, Nanjing

    Google Scholar 

  71. Wang LN, Zhang ZG, Zhang KL (2007) A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material. J Power Sources 167:200–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of China Postdoctoral Science Foundation (2012M520717) and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT.NSRIF.2011099) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-ming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Ym., Ruan, Zw., Tang, Sz. et al. Research status in preparation of FePO4: a review. Ionics 20, 1501–1510 (2014). https://doi.org/10.1007/s11581-014-1241-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1241-x

Keywords

Navigation