Skip to main content
Log in

Enhancing Cadmium Stress Tolerance in Potato Plants Through Overexpression of the VvWRKY2 Transcription Factor

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

WRKY transcription factors (TF) are identified as important regulating plant proteins involved in stress response signaling pathways. Overexpression of these transcription factors in plants improved plant biotic and abiotic stress responses. In this context, we have envisaged transferring a cDNA encoding the grapevine VvWRKY2TF in potato plants. Four transgenic lines were selected (BFW2A, BFW2C, BFW2D, and BFW2F). In the present study, their response to Cadmium (Cd) stress (50, 100, 150, and 300 μM) was evaluated in vitro. Cadmium is recognized as being among the most harmful heavy metals to plants. Its accumulation in plant cells and tissues disturbs cell homeostasis and causes numerous metabolic damages that affect productivity. The wildtype (WT) plants from the BF15 potato variety and the transgenic plants overexpressing VvWRKY2TF were submitted to cadmium in vitro stress for 20 days. Plant growth and oxidative stress parameters were followed in these plants. All transgenic plants appeared more vigorous than WT. The BFW2A, BFW2C, and BFW2D lines showed better stem development rates than the WT and BFW2F lines. Malondialdehyde (MDA) production in both roots and leaves was reduced in BFW2A, BFW2C, and BFW2D plants as compared to BFW2F and WT plants. This result was associated with the best antioxidant activities of superoxide dismutase (SOD) and catalase (CAT) displayed by these genetically modified lines suggesting their better adaptation to Cd stress conditions. Cd accumulation in plant tissues was investigated, and higher levels of Cd were found in transgenic plants than in WT plants. These findings point to a functional Cd sequestration mechanism in the roots of transgenic plants expressing VvWRKY2. These findings imply that the VvWRKY2 TF is implicated in heavy metal response signaling processes. Its overexpression in plants may be an efficient strategy to reduce the negative effects of Cd stress, promoting the growth patterns and the activity of reactive oxygen species-scavenging enzymes in potato plants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting the finding of this work are all included within the article.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alves LR, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratao PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115

    Article  CAS  Google Scholar 

  • Alves LR, Prado ER, de Oliveira R, Santos EF, de Souza IL, Dos Reis AR, ... Gratão PL (2020) Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology 29(5):594–606

  • Bao T, Sun T, Sun L (2011) Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and non-hyperaccumulator Solanum lycopersicum L. Afr J Biotech 10:17180–17185

    CAS  Google Scholar 

  • Boaretto RM, Hippler FWR, Ferreira GA, Azevedo RA, Quaggio JA, Mattos D Jr (2020) The possible role of extra magnesium and nitrogen supply to alleviate stress caused by high irradiation and temperature in lemon trees. Plant Soil 457:57–70

    Article  CAS  Google Scholar 

  • Bouaziz D, Pirrello J, Amor HB, Hammami A, Charfeddine M, Dhieb A, ... Gargouri-Bouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein – dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Xian P, Wang H, Lin R, Lian T, Cheng Y, ... Nian H (2020) Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes. Front Plant Sci 11:724

  • Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Gargouri-Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell Tiss Organ Cult (PCTOC) 128(3):521–541

    Article  CAS  Google Scholar 

  • Chauhan D, Singh D, Pandey H, Khan Z, Srivastava R, Dhiman VK, Dhiman VK (2023) Impact of transcription factors in plant abiotic stress: a recent advancement for crop improvement. Plant Transcription Factors. Academic Press, India, pp 271–286

    Chapter  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA)-Gene Regul Mech 1819(2):120–128

    Article  CAS  Google Scholar 

  • Chen MX, Lung SC, Du ZY, Chye ML (2014) Engineering plants to tolerate abiotic stresses. Biocatal Agric Biotechnol 3(1):81–87

    Article  Google Scholar 

  • Chiab N (2021) The overexpression of the VvWRKY2 transcription factor in potato improved the agricultural performance and tubers’ physio-chemical and industrial properties even under non-stress conditions. Research Square (preprint) 1:1–19

    Google Scholar 

  • Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12(6):064016

    Article  Google Scholar 

  • Dang FF, Lin JH, Chen YP, Li GX, Guan DY, Zheng SJ, He S (2019) A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper. J Exp Bot 70:1581–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi SR, Vutharadhi S, Mahesh H, Bandameedi A (2022) Modulation of WRKY transcription factors in plant biotic stress responses. In: Molecular Response and Genetic Engineering for Stress in Plants, vol 2: Biotic stress. IOP Publishing, Bristol, pp 1–11

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Ding WW, Fang WB, Shi SY, Zhao YY, Li XJ, Xiao K (2016) Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Biol Rep 34:1111–1126

    Article  Google Scholar 

  • El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N, ... Rinklebe J (2022) Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol 52(5):675–726

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, ... Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

  • Ghosh S, Adhikari S, Adhikari A, Hossain Z (2022) Contribution of plant miRNAome studies towards understanding heavy metal stress responses: current status and future perspectives. Environ Exp Bot 194:104705

    Article  CAS  Google Scholar 

  • Gichner T, Patková Z, Száková J, Demnerová K (2006) Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol Environ Saf 65:420–426

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JF, Antes FG, Maldanar J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, de Moraes Flores EM, Nicoloso FR (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47:814–821

    Article  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494

    Article  PubMed  Google Scholar 

  • Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28(5):803–816

    Article  PubMed  Google Scholar 

  • Guo X, Ullah A, Siuta D, Kukfisz B, Iqbal S (2022) Role of WRKY transcription factors in regulation of abiotic stress responses in cotton. Life 12(9):1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeez A, Rasheed R, Ashraf MA, Qureshi FF, Hussain I, Iqbal M (2023) Effect of heavy metals on growth, physiological and biochemical responses of plants, chap 8. In: Plants and their Interaction to Environmental Pollution. Elsevier, Ethiopia, pp 139–159

  • Haider FU, Cai L, Coulter JA, Cheema SA, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

  • Han YY, Fan TT, Zhu XY, Wu X, Ouyang J, Jiang L, Cao SQ (2019) WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. Plant Mol Biol 99:149–159

    Article  CAS  PubMed  Google Scholar 

  • He K, Chen Y, Tang Z, Hu Y (2016) Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ Sci Pollut Res 23(3):2778–2788

    Article  CAS  Google Scholar 

  • Hodges M, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxydation in plant tissues containing anthocyanin another interfering compounds Planta. Plant Scien 207:604–611

    CAS  Google Scholar 

  • Hong C, Cheng D, Zhang G, Zhu D, Chen Y, Tan M (2017) The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 482(4):1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48(4):339–350

    Article  CAS  PubMed  Google Scholar 

  • Janeeshma E, Kalaji HM, Puthur JT (2021) Differential responses in the photosynthetic efficiency of Oryza sativa and Zea mays on exposure to Cd and Zn toxicity. Acta Physiol Plant 43:1–16

    Article  Google Scholar 

  • Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ (2020) Transcription factors in plant stress responses: challenges and potential for sugarcane improvement. Plants 9(4):491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Li M, Wang H, Zhu B, Gu L, Du X, Ren M (2021) TaWRKY70 positively regulates TaCAT5 enhanced Cd tolerance in transgenic Arabidopsis. Environ Exp Bot 190:104591

    Article  CAS  Google Scholar 

  • Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 16(4):295–305

    Article  CAS  PubMed  Google Scholar 

  • Khoudi H, Maatar Y, Gouiaa S, Masmoudi K (2012) Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. J Plant Physiol 169:98–103

    Article  CAS  PubMed  Google Scholar 

  • Li X, Mao X, Xu Y, Li Y, Zhao N, Yao J, ... Li S (2021) Comparative transcriptomic analysis reveals the coordinated mechanisms of Populus× canadensis ‘Neva’leaves in response to cadmium stress. Ecotoxicol Environ Saf 216:112179

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Transact 11:591–592

    Article  CAS  Google Scholar 

  • Lin L, Yuan K, Huang Y, Dong H, Qiao Q, Xing C, ... Zhang S (2022) A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression. Environ Exp Bot 196:104782

  • Liu CF, Guo J, Cui Y, Lü T, Zhang X, Shi G (2011) Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor beans seedlings. Plant Soil 344:131–141

    Article  CAS  Google Scholar 

  • Liu C, Yuan J, Xiang L (2020) Literature review of plant WRKY transcription factors. Hans J Agric Sci 10:628–633

    Google Scholar 

  • Liu W, Liang X, Cai W, Wang H, Liu X, Cheng L, ... Han D (2022) Isolation and functional analysis of VvWRKY28, a Vitis Vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. Int J Mol Sci 23(21):13418

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (O ryza sativa) cells. New Phytol 206(3):1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Cao X, Tan X, Si L, Wu L (2017) Effects of cadmium stress on pakchoi (Brassica chinensis L.) growth and uptake of inorganic and organic nitrogenous compounds. Environ Exp Bot 137:49–57

    Article  CAS  Google Scholar 

  • Milone MT, Sgherri C, Clijsters H, Navari-Izzo F (2003) Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50:265–276

    Article  CAS  Google Scholar 

  • Mitra M, Agarwal P, Roy S (2023) Plant response to heavy metal stress: an insight into the molecular mechanism of transcriptional regulation. Plant Transcription Factors. Academic Press, India, pp 337–367

    Chapter  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio‐Costet MF, ... Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiologia Plantarum 131(3):434–447

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Let 8:199–216

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor D, Peng T, Zhang J, Tsang DC, Alessi DS, Shen Z, ... Hou D (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619:815–826

  • Rabêlo FHS, Lux A, Rossi ML, Martinelli AP, Cuypers A, Lavres J (2018) Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environ Exp Bot 148:35–46

    Article  Google Scholar 

  • Runxian S, Xiang L, Xiuhong M, Li W, Xiangli C, Junxiu Y, ... Shanwen L (2021) Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress. J Beijing For Univ 2021 43(7):12–21

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sheng YB, Yan XX, Huang Y, Han YY, Zhang C, Ren YB, Fan TT, Xiao FM, Liu YS, Cao SQ (2019) The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ 42:891–903

    Article  CAS  PubMed  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32(1):2–11

    Article  PubMed  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Yordanov I (1997) Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulg J Plant Physiol 23:114–133

    CAS  Google Scholar 

  • Verma S, Verma PK, Chakrabarty D (2023) Plant transcription factors: important factors controlling oxidative stress in plants. Plant transcription factors. Academic Press, India, pp 383–417

    Chapter  Google Scholar 

  • Wang H, Chen W, Xu Z, Chen M, Yu D (2023) Functions of WRKYs in plant growth and development. Trends Plant Sci 28(6):630–645

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Anand S, Singh B, Bohra A, Joshi R (2021) WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep 40:1071–1085

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Chen Q, Chen L, Tian F, Chen X, Han, C, ... Zhang F (2022) A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. Ecotoxicol Environ Saf 239:113630

  • Yan Z, Tam NFY (2013) Differences in lead tolerance between Kandelia obovata and Acanthus ilicifolius seedlings under varying treatment times. Aquat Toxicol 126:154–162

    Article  CAS  PubMed  Google Scholar 

  • Yang GY, Wang C, Wang YC, Guo YC, Zhao YL, Yang CP, Gao CQ (2016) Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of cadmium stress. Sci Rep 6:18752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang F, Xia Y, Wang G, Shen Z (2010) Excess copper induces production of hydrogen peroxide in the leaf of Elsholtziahaichowensis through apoplastic and symplastic Cu, Zn-Superoxyde dismutase. J Hazard Mater 178:834–843

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang M, Song HY, Zhao JQ, Shabala S, Tian SK, Yang XE (2020) A novel plasma membrane based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance. Environ Exp Bot 176:104121

    Article  CAS  Google Scholar 

  • Zhang T, Li ZQ, Wu GQ (2021) Role of WRKY Transcription factor in plant response to stresses. Biotechnol Bull 37(10):203

    Google Scholar 

  • Zhu G, Xiao H, Guo Q, Zhang Z, Zhao J, Yang D (2018) Effects of cadmium stress on growth and amino acid metabolism in two composite plants. Ecotoxicol Environ Saf 158:300–308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NC, SC, MA; YA: conceptualization, methodology, software. NC: data curation, writing, original draft preparation. RGB, RM: supervision. ONE: reviewing and editing.

Corresponding author

Correspondence to Nour Chiab.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiab, N., Charfeddine, S., Ayadi, M. et al. Enhancing Cadmium Stress Tolerance in Potato Plants Through Overexpression of the VvWRKY2 Transcription Factor. Potato Res. (2024). https://doi.org/10.1007/s11540-023-09687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11540-023-09687-9

Keywords

Navigation