Skip to main content
Log in

Coupling Fluid and Solute Dynamics Within the Ocular Surface Tear Film: A Modelling Study of Black Line Osmolarity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a mathematical model describing the spatial distribution of tear film osmolarity across the ocular surface of a human eye during one blink cycle, incorporating detailed fluid and solute dynamics. Based on the lubrication approximation, our model comprises three coupled equations tracking the depth of the aqueous layer of the tear film, the concentration of the polar lipid, and the concentration of physiological salts contained in the aqueous layer. Diffusive boundary layers in the salt concentration occur at the thinnest regions of the tear film, the black lines. Thus, despite large Peclet numbers, diffusion ameliorates osmolarity around the black lines, but nonetheless is insufficient to eliminate the build-up of solute in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye.

Vertical saccadic eyelid motion can reduce osmolarity at the lower black line, raising the prospect that select eyeball motions more generally can assist in alleviating tear film hyperosmolarity. Finally, our results indicate that measured evaporative rates will induce excessive hyperosmolarity at the black lines, even for the healthy eye. This suggests that further evaporative retardation at the black lines, for instance due to the cellular glycocalyx at the ocular surface or increasing concentrations of mucus, will be important for controlling hyperosmolarity as the black line thins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. That is, the volume of fluid evaporated per unit surface area per unit time.

References

  • Aydemir, E., Breward, C. J. W., & Witelski, T. P. (2011). The effect of polar lipids on tear film dynamics. Bull. Math. Biol., 73(6), 1171–1201.

    Article  MathSciNet  MATH  Google Scholar 

  • Baudouin, C. (2007). The vicious circle in dry eye syndrome: a mechanistic approach. J. Fr. Ophthalmol., 30, 239–246.

    Article  Google Scholar 

  • Berger, R. E., & Corrsin, S. (1974). A surface tension gradient mechanism for driving the pre-corneal tear film after a blink. J. Biomech., 7, 225–238.

    Article  Google Scholar 

  • Berke, A., & Mueller, S. (1998). The kinetics of lid motion and its effects on the tear film. Adv. Exp. Med. Biol., 438, 417–424.

    Article  Google Scholar 

  • Braun, R. J. (2012). Dynamics of the tear film. Annu. Rev. Fluid Mech., 44, 267–297.

    Article  MathSciNet  Google Scholar 

  • Braun, R. J., & Fitt, A. D. (2003). Modelling drainage of the precorneal tear film after a blink. Math. Med. Biol., 20, 1–28.

    Article  MATH  Google Scholar 

  • Bron, A., Tiffany, J., Gouveia, S., Yokoi, N., & Voon, L. (2004). Functional aspects of the tear film lipid layer. Exp. Eye Res., 78, 347–360.

    Article  Google Scholar 

  • Bron, A. J., Yokoi, N., Gaffney, E. A., & Tiffany, J. M. (2009). Predicted phenotypes of dry eye—proposed consequences of its natural history. Ocul. Surf., 7, 78–92.

    Article  Google Scholar 

  • Bron, A. J., Yokoi, N., Gaffney, E. A., & Tiffany, J. M. (2011a). A solute gradient in the tear meniscus I. A hypothesis to explain Marx’s line. Ocul. Surf., 9, 70–91.

    Article  Google Scholar 

  • Bron, A. J., Yokoi, N., Gaffney, E. A., & Tiffany, J. M. (2011b). A solute gradient in the tear meniscus II. Implications for lid margin disease, including meibomian gland dysfunction. Ocul. Surf., 9, 92–97.

    Article  Google Scholar 

  • Burdon, R. S. (1949). Surface tension and the spreading of liquids. London: Cambridge University Press.

    Google Scholar 

  • Caffery, B. E., & Josephson, J. E. (1991). Corneal staining after sequential instillations of fluorescein over 30 days. Optom. Vis. Sci., 68, 467–469.

    Article  Google Scholar 

  • Craig, J., & Tomlinson, A. (1997). Importance of the lipid layer in human tear film stability and evaporation. Optom. Vis. Sci., 74, 8–13.

    Article  Google Scholar 

  • Deryagin, B. V., & Levi, S. M. (1964). Film coating theory. New York: Focal Point Press.

    Google Scholar 

  • DEWS (2007). The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul. Surf., 5, 75–92.

    Article  Google Scholar 

  • Doane, M. G. (1980). Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am. J. Ophthalmol., 89, 507–516.

    Google Scholar 

  • Doane, M. G. (1981). Blinking and the mechanics of the lacrimal drainage system. Ophthalmology, 88, 844–851.

    Google Scholar 

  • Doughty, M. J., Naase, T., Donald, C., Hamilton, L., & Button, N. F. (2004). Visualisation of Marxs line along the marginal eyelid conjunctiva of human subjects with lissamine green dye. Ophthal. Physiol. Opt., 24, 1–7.

    Article  Google Scholar 

  • Gaffney, E. A., Tiffany, J. M., Yokoi, N., & Bron, A. J. (2010). A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog. Retin. Eye Res., 29, 59–78.

    Article  Google Scholar 

  • Gilbard, J. P., Farris, R. L., & Santamaria, J. (1978). Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch. Ophthalmol., 96, 677–681.

    Article  Google Scholar 

  • Gilbard, J. P., Carter, J. B., Sang, D. N., Refojo, M. F., Hanninen, L. A., & Kenyon, K. R. (1984). Morphologic effect of hyperosmolarity on rabbit corneal epithelium. Ophthalmology, 91, 1205–1212.

    Google Scholar 

  • Gilbard, J. P., Rossi, S. R., & Heyda, K. G. (1989). Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology, 96, 1180–1186.

    Google Scholar 

  • Gipson, I. K. (2004). Distribution of mucins at the ocular surface. Exp. Eye Res., 78, 379–388.

    Article  Google Scholar 

  • Goto, E., Endo, K., Suzuki, A., Fujikura, Y., Matsumoto, Y., & Tsubota, K. (2003). Tear evaporation dynamics in normal subjects and subjects with obstructive meibomian gland dysfunction. Investig. Ophthalmol. Vis. Sci., 44, 533–539.

    Article  Google Scholar 

  • Harwood, M. R., Mezey, L. E., & Harris, C. M. (1999). The spectral main sequence of human saccades. J. Neurosci., 19, 9098–9106.

    Google Scholar 

  • Heryudono, A., Braun, R. J., Driscoll, T. A., Maki, K. L., & Cook, L. P. (2007). Single-equation models for the tear film in a blink cycle: realistic lid motion. Math. Med. Biol., 24, 347–377.

    Article  MATH  Google Scholar 

  • Holly, F., & Lemp, M. A. (1973). Formation and rupture of the tear film. Exp. Eye Res., 15, 515–525.

    Article  Google Scholar 

  • Huang, A. J. W., Belldegrun, R., Hanninen, L., Kenyon, K. R., Tseng, S. C. G., & Refojo, M. F. (1989). Effect of hypertonic solutions on conjunctival epithelium and mucin like glycoprotein discharge. Cornea, 8, 15–20.

    Article  Google Scholar 

  • Johnson, M. E., & Murphy, P. J. (2005). The agreement and repeatability of tear meniscus height measurement. Methods Optom. Vis. Sci., 82, 1030–1037.

    Article  Google Scholar 

  • Jones, M. B., Please, C. P., McElwain, D. L. S., Fulford, G. R., & Robert, A. P. (2006). The effect of the lipid layer on tear film behaviour. Bull. Math. Biol., 86, 1355–1381.

    Article  Google Scholar 

  • Khanal, S., Tomlinson, A., McFadyen, A., Diaper, C., & Ramaesh, K. (2008). Dry eye diagnosis. Investig. Ophthalmol. Vis. Sci., 49, 1407–1414.

    Article  Google Scholar 

  • King-Smith, P. E., Fink, B. A., Hill, R. M., Koelling, K. W., & Tiffany, J. M. (2004). The thickness of the tear film. Curr. Eye Res., 29, 357–368.

    Article  Google Scholar 

  • Maki, K. L., Braun, R. J., Henshaw, W. D., & King-Smith, P. E. (2010a). Tear film dynamics on an eye-shaped domain I: pressure boundary conditions. IMA J. Math. Med. Biol., 27, 227–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Maki, K. L., Braun, R. J., Henshaw, W. D., & King-Smith, P. E. (2010b). Tear film dynamics on an eye-shaped domain part 2. Flux boundary conditions. J. Fluid Mech., 647, 361–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez, C. C., Alanis, E. E., & Romero, G. G. (2002). Determinacion interferometrica del coeficiente de difusion de NaCl-H2O, a distintas concentraciones y temperaturas. Energ. Renov. Med. Ambiente, 10, 1–8.

    Google Scholar 

  • Marx, E. (1924). Uber vitale farbung des auges und der augenlider. I. Uber anatomie, physiologie und pathologie des augenlidrandes und der tranenpunkte. Graf. Arch.Ophthalmol., 114, 465–482.

    Article  Google Scholar 

  • McCulley, J. P., & Shine, W. E. (2001). The lipid layer: the outer surface of the ocular surface tear film. Biosci. Rep., 21, 407–418.

    Article  Google Scholar 

  • McCulley, J. P., & Shine, W. E. (2002). Meibomian gland and tear film lipids: structure, function and control. Adv. Exp. Med. Biol., 506, 373–378.

    Google Scholar 

  • Miller, K. L., Polse, K. A., & Radke, C. J. (2002). Black-line formation and the “perched” human tear film. Curr. Eye Res., 25, 155–162.

    Article  Google Scholar 

  • Mishima, S., & Maurice, D. M. (1961). The oily layer of the tear film and evaporation from the corneal surface. Exp. Eye Res., 1, 39–45.

    Article  Google Scholar 

  • Nagyova, A., & Tiffany, J. (1999). Components responsible for the surface tension of the human tears. Curr. Eye Res., 19, 4–11.

    Article  Google Scholar 

  • Nichols, B., Dawson, C. R., & Togni, B. (1983). Surface features of the conjunctiva and cornea. Investig. Ophthalmol. Vis. Sci., 24, 570–576.

    Google Scholar 

  • Pult, H., Korb, D. R., Blackie, C., & Knop, E. (2010). About vital staining of the eye and eyelids. I. The anatomy, physiology, and pathology of the eyelid margins and the lacrimal puncta by E. Marx. Optom. Vis. Sci., 87, 718–724.

    Article  Google Scholar 

  • Riquelme, R., Lira, I., Pierez-Liopez, C. S., Rayas, J. A., & Rodriguez-Vera, R. (2007). Interferometric measurement of a diffusion coefficient: comparison of two methods and uncertainty analysis. J. Phys. D, Appl. Phys., 40, 2769–2776.

    Article  Google Scholar 

  • Sakata, E. K., & Berg, J. C. (1969). Surface diffusion in monolayers. Ind. Eng. Chem. Fundam., 8(3), 570–575.

    Article  Google Scholar 

  • Sharma, A., Tiwari, S., Khanna, R., & Tiffany, J. M. (1998). Hydrodynamics of meniscus induced thinning of the tear fluid. In D. Sullivan, D. Dartt, & M. Meneray (Eds.), Lacrimal gland, tear film, and dry eye syndromes 2, New York: Plenum.

    Google Scholar 

  • Tabery, H. M. (2003). Corneal surface changes in keratoconjunctivitis sicca. Part I: the surface proper. A non-contact photomicrographic in vivo study in the human cornea. Eye, 17, 482–487.

    Article  Google Scholar 

  • Tiffany, J. M., Winter, N., & Bliss, G. (1989). Tear film stability and tear surface tension. Curr. Eye Res., 8, 507–515.

    Article  Google Scholar 

  • Tomlinson, A., & Khanal, S. (2005). Assessment of tear film dynamics quantification approach. Ocul. Surf., 3, 81–95.

    Article  Google Scholar 

  • Tsubota, K., Hata, S., Okusawa, Y., Egami, F., Ohtsuk, T., & Nakamori, K. (1996). Quantitative videographic analysis of blinking in normal subjects and patients with dry eye. Arch. Ophthalmol., 114, 715–720.

    Article  Google Scholar 

  • Winter, K. N., Anderson, D. M., & Braun, R. J. (2010). A model for wetting and evaporation of a post-blink precorneal tear film. Math. Med. Biol., 27, 211–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, H., Fatt, I., & Radke, C. J. (1996). Deposition and thinning of the human tear film. J. Colloid Interface Sci., 184, 44–51.

    Article  Google Scholar 

  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum.

    Google Scholar 

  • Yokoi, N., Bron, A. J., Tiffany, J. M., Brown, N., Hsuan, J., & Fowler, C. (1999). Reflective meniscometry: a non-invasive method to measure tear meniscus curvature. Br. J. Ophthalmol., 83, 92–97.

    Article  Google Scholar 

  • Yokoi, N., Yameda, H., Mizukusa, Y., Bron, A. J., Tiffany, J. M., Kato, T., & Kinoshita, S. (2008). Rheology of tear film lipid layer spread in normal and aqueous tear-deficient dry eyes. Investig. Ophthalmol. Vis. Sci., 49, 5319–5324.

    Article  Google Scholar 

  • Zhu, H., & Chauhan, A. (2005). A mathematical model for ocular tear and solute balance. Curr. Eye Res., 30, 841–854.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on work supported by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST). We are grateful to Professor Richard Braun, Professor Anthony Bron, Professor Colin Please, and Dr. John Tiffany for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zubkov.

Appendix: Derivation of the Lubrication Model

Appendix: Derivation of the Lubrication Model

We derive a model to describe the fluid motion, polar lipid concentration and salt concentration during a blink and during a saccade. In both cases, we neglect inertial terms. In addition, for saccadic motion we also neglect the non-inertial forces arising from the rotating frame, since it is straightforward to show that viscous effects dominate over rotational effects everywhere, even in the menisci. Hence, we proceed by substituting (29) and (30) into the model equations (3), (14), (17). Omitting the primes, we obtain the following system of equations:

(48)
(49)
(50)
(51)
(52)

where

$$ C=\frac{\gamma_{0}\varepsilon^{3}}{\mu U},\qquad B=\frac{\rho g{L_{\mathrm{op}}^{2}}}{\varepsilon \gamma_{0}},\qquad \mathit{Pe}_{c}= \frac{UL_{\mathrm{op}}}{D_{c}},\qquad \mathit{Pe}_{\varGamma }=\frac{UL_{\mathrm{op}}}{D_{\varGamma }}, $$
(53)

and we note that we choose to retain u s as a primary variable. The boundary conditions (1), (2), (4)–(13), (15), (16), (18)–(24) become

(54)
(55)
(56)
(57)

where

$$ M=\frac{\varepsilon RT\varGamma^{\ast }}{\mu U}. $$
(58)

The evaporation term in (57) is given by

$$ \tilde{E}=\frac{\tilde{E}_{0}h}{\tilde{\delta}+h}\tilde{f}(x,\tilde{a}),\quad \tilde{f}(x,\tilde{a})=\left \{ \begin{array}{l@{\quad }l} 0.5-0.5\cos (\pi x/\tilde{a}), & {0\leqslant x<\tilde{a}} ,\\ 1, & {\tilde{a}\leqslant x<1-\tilde{a}} ,\\ 0.5+0.5\cos (\pi ( x-1+\tilde{a} ) /\tilde{a}), & {1-\tilde{a}\leqslant x\leqslant 1}.\end{array} \right . $$
(59)

The boundary conditions on the fluid problem are

(60)
(61)

where

$$ \tilde{L}_{\mathrm{up}}(t)=\left \{ \begin{array}{l@{\quad }l} \tilde{L}_{\mathrm{cl}}+\tilde{U}_{0}\tilde{\tau} ( -\frac{1}{2} [ \frac{t}{\tilde{\tau}} ]^{2}+\lambda [ \frac{\sqrt{\pi }}{2}\operatorname {erf}( \sqrt{\frac{t}{\tilde{\tau}}} ) -\sqrt{\frac{t}{\tilde{\tau}}}e^{-t/\tilde{\tau}} ] ) , & 0\leqslant t<\tilde{t}_{\mathrm{op}}, \\ 1, & \tilde{t}_{\mathrm{op}}\leqslant t\leqslant \tilde{t}_{\mathrm{ib}}, \\ 1- ( 1-\tilde{L}_{\mathrm{cl}} ) ( \frac{t-\tilde{t}_{\mathrm{ib}}}{\tilde{\tau}_{\mathrm{cl}}} )^{2}\exp ( 1- ( \frac{t-\tilde{t}_{\mathrm{ib}}}{\tilde{\tau}_{\mathrm{cl}}} )^{2} ) , & \tilde{t}_{\mathrm{ib}}<t\leqslant \tilde{t}_{\mathrm{ib}}+\tilde{\tau}_{\mathrm{cl}} \end{array} \right . $$
(62)

and

(63)
(64)

The boundary conditions on the lipid problem are

$$ u_s\varGamma -\frac{1}{\mathit{Pe}_{\varGamma } (1+\varepsilon^2 h_x^2 )^{\frac{1}{2}}} \varGamma_x= \tilde{U}_{\mathrm{low}/\mathrm{up}}\varGamma \quad \mathrm{at}\ x= \tilde{L}_{\mathrm{low}/\mathrm{up}}, $$
(65)

while the boundary conditions on the salt problem are

(66)
(67)
(68)
(69)

The initial conditions are given by

$$ h=\tilde{h}_{0}(x),\qquad\varGamma =1,\qquad c=1\quad \mathrm{at}\ t=0, $$
(70)

where \(\tilde{h}_{0}(x)\) satisfies

$$ \int_{0}^{\tilde{L_{\mathrm{cl}}} }\tilde{h}_{0}\, \mathrm{d}x=\tilde{V}_{0},\qquad \tilde{h}_{0}(x=0, \tilde{L}_{\mathrm{cl}})=\tilde{h}^{\ast },\qquad \biggl[\frac{\tilde{h}_{0xx}}{ ( 1+\varepsilon^{2}\tilde{h}_{0x}^{2} )^{3/2}} \biggr]_x=B. $$
(71)

Assuming that ε≪1, we can take advantage of the lubrication approximation. Following the usual routine of lubrication analysis, we solve the boundary-value problem for u, v and p expressing them as expansions in ε 2, which yields (e.g.)

$$ u=-C [ h_{xxx}-B ] \biggl( \frac{y^{2}}{2}-hy \biggr) -M \varGamma_{x}y+O \bigl( \varepsilon^{2} \bigr) . $$
(72)

Substituting (72) into (51), (57), and omitting O(ε 2) terms, we obtain

$$ \begin{aligned} &h_{t}+(\bar{u}h)_{x}=-\tilde{E},\qquad \bar{u}=\frac{1}{3}Ch^{2} [ h_{xxx}-B ] - \frac{1}{2}Mh\varGamma_{x},\\ &\varGamma_{t}+ \biggl( u_{s}\varGamma -\frac{1}{\mathit{Pe}_{\varGamma }} \varGamma_{x} \biggr)_{x}=0,\qquad u_{s}= \frac{1}{2}Ch^{2} [ h_{xxx}-B ] -Mh \varGamma_{x}.\end{aligned} $$
(73)

A similar system was previously derived by Jones et al. (2006) and Aydemir et al. (2011).

Let us now consider the equation for the salt concentration. Substituting the salt concentration expansion

$$ c=c_{0}+\varepsilon^{2}c_{1}+O \bigl( \varepsilon^{4} \bigr) $$
(74)

into (52), (66), (67), and additionally assuming that Pe c O(1) and \(\tilde{E}_{0}\sim O(1)\), our leading-order model is simply

(75)
(76)

Thus,

$$ c_{0}=c_{0}(x,t). $$
(77)

In order to find an equation for c 0, we proceed to next order in the field equations and boundary conditions, and find that

(78)
(79)
(80)

Integrating (78) across the tear film and using the boundary conditions (79), (80), we obtain

$$ h ( c_{0t}+\bar{u}c_{0x} ) =\frac{1}{\mathit{Pe}_{c}} [ hc_{0x} ]_{x}+\tilde{E}c_{0} . $$
(81)

To obtain boundary conditions for Eqs. (73), (81), we use (65) and integrate (61), (68), (69) across the tear film, giving

(82)

Omitting O(ε 2) terms in Eqs. (71), we find that the initial tear film depth is given by

$$ \begin{aligned}[b] \tilde{h}_{0}(x,\tilde{V}_{0})&=\frac{B}{6}x^{3}- \biggl( \frac{6 ( \tilde{V}_{0}-\tilde{h}^{\ast }\tilde{L}_{\mathrm{cl}} ) }{\tilde{L}_{\mathrm{cl}}^{3}}+\frac{\tilde{L}_{\mathrm{cl}}B}{4} \biggr) x^{2}\\ &\quad + \biggl( \frac{6 ( \tilde{V}_{0}-\tilde{h}^{\ast }\tilde{L}_{\mathrm{cl}} ) }{L_{\mathrm{cl}}^{2}}+\frac{\tilde{L}_{\mathrm{cl}}^{2}B}{12}\biggr) x+\tilde{h}^{\ast } \quad \mathrm{at}\ t=0.\end{aligned} $$
(83)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubkov, V.S., Breward, C.J.W. & Gaffney, E.A. Coupling Fluid and Solute Dynamics Within the Ocular Surface Tear Film: A Modelling Study of Black Line Osmolarity. Bull Math Biol 74, 2062–2093 (2012). https://doi.org/10.1007/s11538-012-9746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9746-9

Keywords

Navigation