Skip to main content
Log in

Renal Toxicities of Targeted Therapies

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–6. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  2. Gurevich F, Perazella MA (2009) Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med 122(4):322–8. doi:10.1016/j.amjmed.2008.11.025

    Article  CAS  PubMed  Google Scholar 

  3. Rudge JS, Holash J, Hylton D, Russell M, Jiang S, Leidich R et al (2007) VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A 104(47):18363–70. doi:10.1073/pnas.0708865104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Usui J, Glezerman IG, Salvatore SP, Chandran CB, Flombaum CD, Seshan SV (2014) Clinicopathological spectrum of kidney diseases in cancer patients treated with vascular endothelial growth factor inhibitors: a report of 5 cases and review of literature. Hum Pathol 45(9):1918–27. doi:10.1016/j.humpath.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  5. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358(11):1129–36. doi:10.1056/NEJMoa0707330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhu X, Wu S, Dahut WL, Parikh CR (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis Off J Natl Kidney Found 49(2):186–93. doi:10.1053/j.ajkd.2006.11.039

    Article  CAS  Google Scholar 

  7. Zhu X, Stergiopoulos K, Wu S (2009) Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol 48(1):9–17. doi:10.1080/02841860802314720

    Article  CAS  PubMed  Google Scholar 

  8. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X (2008) Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol 9(2):117–23. doi:10.1016/S1470-2045(08)70003-2

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Li S, Zhu Y, Liang X, Meng H, Chen J et al (2014) Incidence and risk of sorafenib-induced hypertension: a systematic review and meta-analysis. J Clin Hypertens 16(3):177–85. doi:10.1111/jch.12273

    Article  CAS  Google Scholar 

  10. Hurwitz HI, Douglas PS, Middleton JP, Sledge GW, Johnson DH, Reardon DA et al (2013) Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase III studies. Oncologist 18(3):273–80. doi:10.1634/theoncologist.2012-0339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Qi WX, He AN, Shen Z, Yao Y (2013) Incidence and risk of hypertension with a novel multi-targeted kinase inhibitor axitinib in cancer patients: a systematic review and meta-analysis. Br J Clin Pharmacol 76(3):348–57. doi:10.1111/bcp.12149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Qi WX, Lin F, Sun YJ, Tang LN, He AN, Yao Y et al (2013) Incidence and risk of hypertension with pazopanib in patients with cancer: a meta-analysis. Cancer Chemother Pharmacol 71(2):431–9. doi:10.1007/s00280-012-2025-5

    Article  CAS  PubMed  Google Scholar 

  13. Hamnvik OP, Choueiri TK, Turchin A, McKay RR, Goyal L, Davis M et al (2015) Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer 121(2):311–9. doi:10.1002/cncr.28972

    Article  CAS  PubMed  Google Scholar 

  14. Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274(3 Pt 2):H1054–8

    CAS  PubMed  Google Scholar 

  15. Zou AP, Cowley AW Jr (1999) Role of nitric oxide in the control of renal function and salt sensitivity. Curr Hypertens Rep 1(2):178–86

    Article  CAS  PubMed  Google Scholar 

  16. Feihl F, Liaudet L, Waeber B, Levy BI (2006) Hypertension: a disease of the microcirculation? Hypertension 48(6):1012–7. doi:10.1161/01.HYP.0000249510.20326.72

    Article  CAS  PubMed  Google Scholar 

  17. Harper RN, Moore MA, Marr MC, Watts LE, Hutchins PM (1978) Arteriolar rarefaction in the conjunctiva of human essential hypertensives. Microvasc Res 16(3):369–72

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Pacheco FR, Deudero JJ, Castellanos MC, Castilla MA, Alvarez-Arroyo MV, Yague S et al (2006) Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol 291(3):H1395–401. doi:10.1152/ajpheart.01277.2005

    Article  CAS  PubMed  Google Scholar 

  19. Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ et al (2010) Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst 102(9):596–604. doi:10.1093/jnci/djq091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Isobe T, Uchino K, Makiyama C, Ariyama H, Arita S, Tamura S et al (2014) Analysis of adverse events of bevacizumab-containing systemic chemotherapy for metastatic colorectal cancer in Japan. Anticancer Res 34(4):2035–40

    CAS  PubMed  Google Scholar 

  21. Izzedine H, Ederhy S, Goldwasser F, Soria JC, Milano G, Cohen A et al (2009) Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol Off J Eur Soc Med Oncol / ESMO 20(5):807–15. doi:10.1093/annonc/mdn713

    Article  CAS  Google Scholar 

  22. Pande A, Lombardo J, Spangenthal E, Javle M (2007) Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res 27(5B):3465–70

    CAS  PubMed  Google Scholar 

  23. Lemmens L, Claes V, Uzzell M (2008) Managing patients with metastatic colorectal cancer on bevacizumab. Br J Nurs 17(15):944–9

    Article  PubMed  Google Scholar 

  24. Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC (2010) VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer 46(2):439–48. doi:10.1016/j.ejca.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Izzedine H, Rixe O, Billemont B, Baumelou A, Deray G (2007) Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis Off J Natl Kidney Found 50(2):203–18. doi:10.1053/j.ajkd.2007.04.025

    Article  CAS  Google Scholar 

  26. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–34. doi:10.1056/NEJMoa021491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N et al (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111(5):707–16. doi:10.1172/JCI17423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR et al (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–76. doi:10.1152/ajpheart.00133.2005

    Article  CAS  PubMed  Google Scholar 

  29. Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A et al (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278(15):12605–8. doi:10.1074/jbc.C300012200

    Article  CAS  PubMed  Google Scholar 

  30. Grenon NN (2013) Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs 17(4):425–33. doi:10.1188/13.CJON.425-433

    Article  PubMed  Google Scholar 

  31. Izzedine H, Soria JC, Escudier B (2013) Proteinuria and VEGF-targeted therapies: an underestimated toxicity? J Nephrol 26(5):807–10. doi:10.5301/jn.5000307

    Article  PubMed  Google Scholar 

  32. Vigneau C, Lorcy N, Dolley-Hitze T, Jouan F, Arlot-Bonnemains Y, Laguerre B et al (2014) All anti-vascular endothelial growth factor drugs can induce ‘pre-eclampsia-like syndrome’: a RARe study. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 29(2):325–32. doi:10.1093/ndt/gft465

    CAS  Google Scholar 

  33. Hiremath S, Fergusson D, Doucette S, Mulay AV, Knoll GA (2007) Renin angiotensin system blockade in kidney transplantation: a systematic review of the evidence. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 7(10):2350–60. doi:10.1111/j.1600-6143.2007.01928.x

    Article  CAS  Google Scholar 

  34. Blanco S, Bonet J, Lopez D, Casas I, Romero R (2005) ACE inhibitors improve nephrin expression in Zucker rats with glomerulosclerosis. Kidney Int Suppl 93:S10–4. doi:10.1111/j.1523-1755.2005.09303.x

    Article  CAS  PubMed  Google Scholar 

  35. Agabiti-Rosei E (2003) Structural and functional changes of the microcirculation in hypertension: influence of pharmacological therapy. Drugs 63(Spec No):19–29

    Article  CAS  PubMed  Google Scholar 

  36. Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S (2012) Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf 11(Suppl 1):S9–19. doi:10.1517/14740338.2011.606213

    Article  CAS  PubMed  Google Scholar 

  37. Maliakal P, Ledford A (2010) Electrolyte and protein imbalance following anti-EGFR therapy in cancer patients: a comparative study. Exp Ther Med 1(2):307–11. doi:10.3892/etm_00000047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52(5):1180–95

    Article  CAS  PubMed  Google Scholar 

  39. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25. doi:10.1074/jbc.M311201200

    Article  CAS  PubMed  Google Scholar 

  40. Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S et al (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117(8):2260–7. doi:10.1172/JCI31680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C et al (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8(5):387–94. doi:10.1016/S1470-2045(07)70108-0

    Article  CAS  PubMed  Google Scholar 

  42. Fakih M (2008) Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park) 22(1):74–6

    Google Scholar 

  43. Murdoch DL, Forrest G, Davies DL, McInnes GT (1993) A comparison of the potassium and magnesium-sparing properties of amiloride and spironolactone in diuretic-treated normal subjects. Br J Clin Pharmacol 35(4):373–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Blanchard A, Vargas-Poussou R, Vallet M, Caumont-Prim A, Allard J, Desport E et al (2015) Indomethacin, amiloride, or eplerenone for treating hypokalemia in Gitelman syndrome. J Am Soc Nephrol JASN 26(2):468–75. doi:10.1681/ASN.2014030293

    Article  PubMed  Google Scholar 

  45. Cao Y, Liu L, Liao C, Tan A, Gao F (2010) Meta-analysis of incidence and risk of hypokalemia with cetuximab-based therapy for advanced cancer. Cancer Chemother Pharmacol 66(1):37–42. doi:10.1007/s00280-009-1131-5

    Article  CAS  PubMed  Google Scholar 

  46. Giusti RM, Cohen MH, Keegan P, Pazdur R (2009) FDA review of a panitumumab (Vectibix) clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist 14(3):284–90. doi:10.1634/theoncologist.2008-0254

    Article  CAS  PubMed  Google Scholar 

  47. Whang R, Welt LG (1963) Observations in experimental magnesium depletion. J Clin Invest 42:305–13. doi:10.1172/JCI104717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6(2):152–6. doi:10.3816/CCC.2006.n.033

    Article  CAS  PubMed  Google Scholar 

  49. Marcolino MS, Boersma E, Clementino NC, Macedo AV, Marx-Neto AD, Silva MH et al (2011) Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients. Ann Oncol Off J Eur Soc Med Oncol / ESMO 22(9):2073–9. doi:10.1093/annonc/mdq715

    Article  CAS  Google Scholar 

  50. Gafter-Gvili A, Ram R, Gafter U, Shpilberg O, Raanani P (2010) Renal failure associated with tyrosine kinase inhibitors—case report and review of the literature. Leuk Res 34(1):123–7. doi:10.1016/j.leukres.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  51. Pou M, Saval N, Vera M, Saurina A, Sole M, Cervantes F et al (2003) Acute renal failure secondary to imatinib mesylate treatment in chronic myeloid leukemia. Leuk Lymphoma 44(7):1239–41. doi:10.1080/1042819031000079140

    Article  CAS  PubMed  Google Scholar 

  52. Foringer JR, Verani RR, Tjia VM, Finkel KW, Samuels JA, Guntupalli JS (2005) Acute renal failure secondary to imatinib mesylate treatment in prostate cancer. Ann Pharmacother 39(12):2136–8. doi:10.1345/aph.1G131

    Article  PubMed  Google Scholar 

  53. Francois H, Coppo P, Hayman JP, Fouqueray B, Mougenot B, Ronco P (2008) Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis Off J Natl Kidney Found 51(2):298–301. doi:10.1053/j.ajkd.2007.10.039

    Article  CAS  Google Scholar 

  54. Takikita-Suzuki M, Haneda M, Sasahara M, Owada MK, Nakagawa T, Isono M et al (2003) Activation of Src kinase in platelet-derived growth factor-B-dependent tubular regeneration after acute ischemic renal injury. Am J Pathol 163(1):277–86. doi:10.1016/S0002-9440(10)63651-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Vuky J, Isacson C, Fotoohi M, dela Cruz J, Otero H, Picozzi V et al (2006) Phase II trial of imatinib (Gleevec) in patients with metastatic renal cell carcinoma. Investig New Drugs 24(1):85–8. doi:10.1007/s10637-005-4543-z

    Article  CAS  Google Scholar 

  56. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K et al (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354(19):2006–13. doi:10.1056/NEJMoa051140

    Article  CAS  PubMed  Google Scholar 

  57. O’Sullivan S, Horne A, Wattie D, Porteous F, Callon K, Gamble G et al (2009) Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 94(4):1131–6. doi:10.1210/jc.2008-2324

    Article  PubMed  Google Scholar 

  58. Aleman JO, Farooki A, Girotra M (2014) Effects of tyrosine kinase inhibition on bone metabolism: untargeted consequences of targeted therapies. Endocr Relat Cancer 21(3):R247–59. doi:10.1530/ERC-12-0400

    Article  CAS  PubMed  Google Scholar 

  59. Steinberg M (2007) Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther 29(11):2289–308. doi:10.1016/j.clinthera.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  60. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305(5682):399–401. doi:10.1126/science.1099480

    Article  CAS  PubMed  Google Scholar 

  61. Holstein SA, Stokes JB, Hohl RJ (2009) Renal failure and recovery associated with second-generation Bcr-Abl kinase inhibitors in imatinib-resistant chronic myelogenous leukemia. Leuk Res 33(2):344–7. doi:10.1016/j.leukres.2008.07.029

    Article  CAS  PubMed  Google Scholar 

  62. Ozkurt S, Temiz G, Acikalin MF, Soydan M (2010) Acute renal failure under dasatinib therapy. Ren Fail 32(1):147–9. doi:10.3109/08860220903391226

    Article  CAS  PubMed  Google Scholar 

  63. Kaiafa G, Kakaletsis N, Savopoulos C, Perifanis V, Giannouli A, Papadopoulos N et al (2014) Simultaneous manifestation of pleural effusion and acute renal failure associated with dasatinib: a case report. J Clin Pharm Ther 39(1):102–5. doi:10.1111/jcpt.12107

    Article  CAS  PubMed  Google Scholar 

  64. Demetri GD, Lo Russo P, MacPherson IR, Wang D, Morgan JA, Brunton VG et al (2009) Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res 15(19):6232–40. doi:10.1158/1078-0432.CCR-09-0224

    Article  CAS  Google Scholar 

  65. Wallace E, Lyndon W, Chumley P, Jaimes EA, Fatima H (2013) Dasatinib-induced nephrotic-range proteinuria. Am J Kidney Dis Off J Natl Kidney Found 61(6):1026–31. doi:10.1053/j.ajkd.2013.01.022

    Article  CAS  Google Scholar 

  66. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609. doi:10.1146/annurev.cellbio.13.1.513

    Article  CAS  PubMed  Google Scholar 

  67. Liang W, Kujawski M, Wu J, Lu J, Herrmann A, Loera S et al (2010) Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment. Clin Cancer Res Off J Am Assoc Cancer Res 16(3):924–35. doi:10.1158/1078-0432.CCR-09-1486

    Article  CAS  Google Scholar 

  68. Kaplan B, Qazi Y, Wellen JR (2014) Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev 28(3):126–33. doi:10.1016/j.trre.2014.03.002

    Article  Google Scholar 

  69. Letavernier E, Bruneval P, Vandermeersch S, Perez J, Mandet C, Belair MF et al (2009) Sirolimus interacts with pathways essential for podocyte integrity. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc 24(2):630–8. doi:10.1093/ndt/gfn574

    CAS  Google Scholar 

  70. Oroszlan M, Bieri M, Ligeti N, Farkas A, Meier B, Marti HP et al (2010) Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway. Transpl Immunol 23(3):125–32. doi:10.1016/j.trim.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  71. Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012) Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol JASN 23(3):412–20. doi:10.1681/ASN.2011070690

    Article  CAS  PubMed  Google Scholar 

  72. Kirsch AH, Riegelbauer V, Tagwerker A, Rudnicki M, Rosenkranz AR, Eller K (2012) The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am J Physiol Renal Physiol 303(4):F569–75. doi:10.1152/ajprenal.00180.2012

    Article  CAS  PubMed  Google Scholar 

  73. Arnau A, Ruiz JC, Rodrigo E, Quintanar JA, Arias M (2011) Is proteinuria reversible, after withdrawal of mammalian target of rapamycin inhibitors? Transplant Proc 43(6):2194–5. doi:10.1016/j.transproceed.2011.06.045

    Article  CAS  PubMed  Google Scholar 

  74. Kwitkowski VE, Prowell TM, Ibrahim A, Farrell AT, Justice R, Mitchell SS et al (2010) FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15(4):428–35. doi:10.1634/theoncologist.2009-0178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gerullis H, Bergmann L, Maute L, Eimer C, Otto T (2009) Experiences and practical conclusions concerning temsirolimus use and adverse event management in advanced renal cell carcinoma within a compassionate use program in Germany. Cancer Chemother Pharmacol 63(6):1097–102. doi:10.1007/s00280-008-0835-2

    Article  PubMed  Google Scholar 

  76. Li G, Shan C, Liu L, Zhou T, Zhou J, Hu X et al (2015) Tanshinone IIA inhibits HIF-1alpha and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS One 10(2), e0117440. doi:10.1371/journal.pone.0117440

    Article  PubMed Central  PubMed  Google Scholar 

  77. Weidemann A, Bernhardt WM, Klanke B, Daniel C, Buchholz B, Campean V et al (2008) HIF activation protects from acute kidney injury. J Am Soc Nephrol JASN 19(3):486–94. doi:10.1681/ASN.2007040419

    Article  CAS  PubMed  Google Scholar 

  78. Uthurriague C, Thellier S, Ribes D, Rostaing L, Paul C, Meyer N (2014) Vemurafenib significantly decreases glomerular filtration rate. J Eur Acad Dermatol Venereol JEADV 28(7):978–9. doi:10.1111/jdv.12322

    Article  CAS  PubMed  Google Scholar 

  79. Launay-Vacher V, Zimner-Rapuch S, Poulalhon N, Fraisse T, Garrigue V, Gosselin M et al (2014) Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients. Cancer 120(14):2158–63. doi:10.1002/cncr.28709

    Article  CAS  PubMed  Google Scholar 

  80. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–703. doi:10.1056/NEJMoa1006448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(13):1189–97. doi:10.1056/NEJMoa1311107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–70. doi:10.1200/JCO.2011.35.6345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Lin YT, Wang YF, Yang JC, Yu CJ, Wu SG, Shih JY et al (2014) Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 9(11):1720–5. doi:10.1097/JTO.0000000000000326

    Article  CAS  PubMed  Google Scholar 

  84. Schnell P, Bartlett CH, Solomon BJ, Tassell V, Shaw AT, de Pas T et al (2015) Complex renal cysts associated with crizotinib treatment. Cancer Med. doi:10.1002/cam4.437

    PubMed Central  PubMed  Google Scholar 

  85. Horie S, Higashihara E, Nutahara K, Mikami Y, Okubo A, Kano M et al (1994) Mediation of renal cyst formation by hepatocyte growth factor. Lancet 344(8925):789–91

    Article  CAS  PubMed  Google Scholar 

  86. Klempner SJ, Aubin G, Dash A, Ou SH (2014) Spontaneous regression of crizotinib-associated complex renal cysts during continuous crizotinib treatment. Oncologist 19(9):1008–10. doi:10.1634/theoncologist.2014-0216

    Article  PubMed Central  PubMed  Google Scholar 

  87. Shaw AT, Engelman JA (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(26):2537–9. doi:10.1056/NEJMc1404894

    Article  PubMed  Google Scholar 

  88. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369(6):507–16. doi:10.1056/NEJMoa1306220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–23. doi:10.1056/NEJMoa1003466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Izzedine H, Gueutin V, Gharbi C, Mateus C, Robert C, Routier E et al (2014) Kidney injuries related to ipilimumab. Investig New Drugs 32(4):769–73. doi:10.1007/s10637-014-0092-7

    Article  CAS  Google Scholar 

  91. Fadel F, El Karoui K, Knebelmann B (2009) Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361(2):211–2. doi:10.1056/NEJMc0904283

    Article  CAS  PubMed  Google Scholar 

  92. Lute KD, May KF Jr, Lu P, Zhang H, Kocak E, Mosinger B et al (2005) Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 106(9):3127–33. doi:10.1182/blood-2005-06-2298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Bhaumik SK, Kher V, Arora P, Rai PK, Singhal M, Gupta A et al (1996) Evaluation of clinical and histological prognostic markers in drug-induced acute interstitial nephritis. Ren Fail 18(1):97–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Kirk Foster, Department of Pathology/Microbiology, University of Nebraska Medical Center for providing the photomicrographs depicted in Fig. 1.

Conflict of Interest

None of the other authors have any conflicts of interest with any of the subject matter of this work. Dr. Apar Kishor Ganti does, however, report personal fees from Boehringer-Ingelheim, Otsuka Pharmaceuticals, and Biodesix Inc., outside the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketki Tendulkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Mirza, M.M., Ganti, A.K. et al. Renal Toxicities of Targeted Therapies. Targ Oncol 10, 487–499 (2015). https://doi.org/10.1007/s11523-015-0368-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0368-7

Keywords

Navigation