Skip to main content
Log in

Riemannian geometry on the diffeomorphism group of the circle

  • Published:
Arkiv för Matematik

Abstract

The topological group \(\mathcal{D}^k(\mathbb{S})\) of diffeomorphisms of the unit circle \(\mathbb{S}\) of Sobolev class H k, for k large enough, is a Banach manifold modeled on the Hilbert space \(H^k(\mathbb{S})\). In this paper we show that the H 1 right-invariant metric obtained by right-translation of the H 1 inner product on \(T_{\rm id}\mathcal{D}^k(\mathbb{S})\simeq H^k(\mathbb{S})\) defines a smooth Riemannian metric on \(\mathcal{D}^k(\mathbb{S})\), and we explicitly construct a compatible smooth affine connection. Once this framework has been established results from the general theory of affine connections on Banach manifolds can be applied to study the exponential map, geodesic flow, parallel translation, curvature etc. The diffeomorphism group of the circle provides the natural geometric setting for the Camassa–Holm equation – a nonlinear wave equation that has attracted much attention in recent years – and in this context it has been remarked in various papers how to construct a smooth Riemannian structure compatible with the H 1 right-invariant metric. We give a self-contained presentation that can serve as a detailed mathematical foundation for the future study of geometric aspects of the Camassa–Holm equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319–361.

    Google Scholar 

  2. Burgers, J., The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974.

    MATH  Google Scholar 

  3. Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661–1664.

    Article  MATH  MathSciNet  Google Scholar 

  4. Constantin, A., On the Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations 141 (1997), 218–235.

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantin, A., On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155 (1998), 352–363.

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321–362.

    MATH  MathSciNet  Google Scholar 

  7. Constantin, A. and Escher, J., Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475–504.

    Article  MATH  MathSciNet  Google Scholar 

  8. Constantin, A. and Escher, J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z. 233 (2000), 75–91.

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin, A., Kappeler, T., Kolev, B. and Topalov, P., On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom. 31 (2007), 155–180.

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, A. and Kolev, B., On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35 (2002), R51–R79.

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin, A. and Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), 787–804.

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin, A. and Kolev, B., Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109–122.

    Article  MATH  MathSciNet  Google Scholar 

  13. Constantin, A. and McKean, H. P., A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949–982.

    Article  MathSciNet  Google Scholar 

  14. Ebin, D. G. and Marsden, J., Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. 92 (1970), 102–163.

    Article  MathSciNet  Google Scholar 

  15. Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222.

    Article  MATH  MathSciNet  Google Scholar 

  16. Holm, D. D., Kouranbaeva, S., Marsden, J. E., Ratiu, T. and Shkoller, S., A nonlinear analysis of the averaged Euler equations, Arnold Festschrift Vol. 2, Preprint, 1999. arXiv:chao-dyn/9903036.

  17. Hunter, J. K. and Saxton, R., Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), 1498–1521.

    Article  MATH  MathSciNet  Google Scholar 

  18. Iorio, R. J. J. and Iorio, V. d. M., Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics 70, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  19. Keller, H. H., Differential Calculus in Locally Convex Spaces, Lecture Notes in Mathematics 417, Springer, Berlin–Heidelberg, 1974.

    MATH  Google Scholar 

  20. Kouranbaeva, S., The Camassa–Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys. 40 (1999), 857–868.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lang, S., Differential and Riemannian Manifolds, Graduate Texts in Mathematics 160, Springer, Berlin–Heidelberg, 1995.

    MATH  Google Scholar 

  22. Lenells, J., Traveling wave solutions of the Camassa–Holm equation, J. Differential Equations 217 (2005), 393–430.

    Article  MATH  MathSciNet  Google Scholar 

  23. Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry, Texts in Applied Mathematics 17, Springer, Berlin–Heidelberg, 1999.

    MATH  Google Scholar 

  24. McKean, H. P., Breakdown of the Camassa–Holm equation, Comm. Pure Appl. Math. 57 (2004), 416–418.

    Article  MATH  MathSciNet  Google Scholar 

  25. Misiołek, G., A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys. 24 (1998), 203–208.

    Article  MathSciNet  MATH  Google Scholar 

  26. Omori, H., Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs 158, American Mathematical Society, Providence, RI, 1997.

    MATH  Google Scholar 

  27. Ovsienko, V. Y. and Khesin, B. A., The super Korteweg–de Vries equation as an Euler equation, Funktsional. Anal. i Prilozhen. 21:4 (1987), 81–82 (Russian). English transl.: Functional Anal. Appl. 21 (1988), 329–331.

    MATH  MathSciNet  Google Scholar 

  28. Shkoller, S., Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics, J. Funct. Anal. 160 (1998), 337–365.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatan Lenells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenells, J. Riemannian geometry on the diffeomorphism group of the circle. Ark Mat 45, 297–325 (2007). https://doi.org/10.1007/s11512-007-0047-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-007-0047-8

Keywords

Navigation