Skip to main content
Log in

Conformal Vector Fields and the De-Rham Laplacian on a Riemannian Manifold with Boundary

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \((M^n,\,g)\) be an n-dimensional compact connected Riemannian manifold with smooth boundary. In this article, we study the effects of the presence of a nontrivial conformal vector field on \((M^n,\,g)\). We used the well-known de-Rham Laplace operator and a nontrivial solution of the famous Fischer–Marsden differential equation to provide two characterizations of the hemisphere \({\mathbb {S}}^n_+(c)\) of constant curvature \(c>0\). As a consequence of the characterization using the Fischer–Marsden equation, we prove the cosmic no-hair conjecture under a given integral condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Abbassi, M.T.K., Amri, N., Bejan, C.L.: Conformal vector fields and Ricci soliton structures on natural Riemann extensions. Mediterr. J. Math. 18, 55 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besse, A.L.: Einstein manifolds. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  3. Boucher, W., Gibbons, G., Horowitz, G.: Uniqueness theorem for anti-de Sitter spacetime. Phys. Rev. D 30(3), 2447–2451 (1984)

    Article  MathSciNet  Google Scholar 

  4. Bourguignon, J.P.: Une stratification de l’espace des structures Riemanniennes. Compos. Math. 30, 1–41 (1975)

    MathSciNet  MATH  Google Scholar 

  5. Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Brazil. Math. Soc. New Ser. 42(2), 277–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics, Science Press, New York (2006)

    Book  MATH  Google Scholar 

  7. Corvino, J., Eichmair, M., Miao, P.: Deformation of scalar curvature and volume. Math. Annalen. 357, 551–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deshmukh, S.: Characterizing spheres by conformal vector fields. Ann. Univ. Ferrara 56, 231–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deshmukh, S.: Jacobi-type vector fields on Ricci solitons. Bull. Math. Soc. Sci. Math. Roumanie 55, 41–50 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Deshmukh, S., Al-Solamy, S.F.: Conformal gradient vector fields on a compact Riemannian manifold. Colloquium Math. 112(1), 157–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deshmukh, S., Ishan, A., Vilcu, G.: Conformal vector fields and the De-Rham Laplacian on a Riemannian manifold. Mathematics 9(8), 863 (2021)

    Article  Google Scholar 

  12. Duggal, K.L., Sharma, R.: Symmetries of Spacetimes and Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  13. Evangelista, I., Viana, E.: Conformal gradient vector fields on Riemannian manifolds with boundary. Colloq. Math. 159, 231–241 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ejiri, N.: A negative answer to a conjecture of conformal transformations of Riemannian manifolds. J. Math. Soc. Japan 33, 261–266 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer, A.E., Marsden, J.E.: Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc. 80, 479–484 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. García-Río, E., Kupeli, D.N., Ünal, B.: Some conditions for Riemannian manifolds to be isometric with Euclidean spheres. J. Differ. Equ. 194, 287–299 (2003)

    Article  MATH  Google Scholar 

  17. Goldberg, S.I., Kobayashi, S.: The conformal transformation group of a compact Riemannian manifold. Am. J. Math. 84, 170–174 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldberg, S.I., Kobayashi, S.: The conformal transformation group of a compact homogeneous Riemannian manifold. Bull. Am. Math. Soc. 68, 378–381 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hall, G.S.: Conformal vector fields and conformal type collineations in space-times. Gen. Relativ. Gravit. 32, 933–941 (2000). https://doi.org/10.1023/A:1001941209388

    Article  MathSciNet  MATH  Google Scholar 

  20. Hall, G.S., Steele, J.D.: Conformal vector fields in general relativity. J. Math. Phys. 32, 1847 (1991)

  21. Hsiung, C.C.: On the group of conformal transformations of a compact Riemannian manifold. J. Differ. Geom. 2, 185–190 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Hicks, N.: Closed vector fields. Pac. J. Math. 15(1), 141–151 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ishan, A., Deshmukh, S., Vîlcu, G.-E.: Conformal vector fields and the De-Rham Laplacian on a Riemannian manifold. Mathematics. 863(9), 863 (2021)

    Article  Google Scholar 

  24. Kobayashi, O.: A differential equation arising from scalar curvature. J. Math. Soc. Japan 34, 665–675 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lafontaine, J.: Sur la géométrie d’une généralisation de l’équation différentielle d’Obata. J. Math. Pures Appl. 62, 63–72 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Nagano, T.: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Japan 11, 10–14 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nagano, T., Yano, K.: Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. 69, 451–461 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  28. Obata, M.: Certains conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. Bull. Am. Math. Soc. 77, 265–270 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reilly, R.C.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26, 459–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reilly, R.C.: Geometric applications of the solvability of Neumann problems on a Riemannian manifold. Arch. Ration. Mech. Anal. 75(1), 23–29 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tanno, S., Weber, W.C.: Closed conformal vector fields. J. Differ. Geom. 3(3–4), 361–366 (1969)

    MathSciNet  MATH  Google Scholar 

  33. Yano, K., Nagano, T.: Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. 69, 451–461 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yano, K.: Integral Formulas in Riemannian Geometry, New York (1970)

Download references

Acknowledgements

The first named author was partially supported by a grant from CNPq-Brazil. The authors would like to thank Professor Abdênago Barros for fruitful conversations about the results.

Funding

Funding is provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Viana.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evangelista, I., Freitas, A. & Viana, E. Conformal Vector Fields and the De-Rham Laplacian on a Riemannian Manifold with Boundary. Results Math 77, 217 (2022). https://doi.org/10.1007/s00025-022-01749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01749-7

Keywords

Mathematics Subject Classification

Navigation