Skip to main content
Log in

Freeze Thaw Stability and Heat Stability of Coconut Oil-in-Water Emulsions and Coconut Milk Emulsions Stabilized by Enzyme-Modified Soy Lecithin

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study investigated effects of enzyme-modified soy lecithin (ESL) on freeze thaw stability and heat stability of coconut oil-in-water emulsions and coconut milk emulsions. Addition of ESL improved freeze thaw stability of coconut oil-in-water emulsions and coconut milk emulsions. Mean droplet sizes of coconut oil-in-water emulsions contained 20 wt% oil and 9 wt% ESL did not significantly alter after emulsions being frozen at -20 °C for 22 h and thawed at room temperature. Relatively similar fat crystallization patterns obtained from differential scanning calorimetry after three cooling-heating cycles (40 °C to -40 °C to 40 °C at 5 °C/min) confirmed high freeze thaw stability of coconut oil-in-water emulsions. Increasing concentrations of ESL to 9 wt% reduced amounts of destabilized oil in freeze thawed coconut milk emulsions substantially. Heat stability study shows that coconut oil-in-water emulsions and coconut milk emulsions stabilized by 9 wt% ESL remained remarkably stable after heating at 121 °C for 1 h observed by microscopy and mean droplet sizes. This work reveals that ESL contained mostly of unsaturated lysophospholipids reduced partial coalescence during freeze thawing process and reduced protein coagulation, droplets flocculation, and coalescence during heating process. ESL partially displaced and possibly interacted with interfacial coconut proteins which increased stability of coconut milk emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.C. Seow, C.N. Gwee, Int. J. Food Sci. Technol. 32, 189 (1997)

    Article  CAS  Google Scholar 

  2. N. Tangsuphoom, J.N. Coupland, J. Food Sci. 70(8), 466 (2005)

    Article  Google Scholar 

  3. N. Tangsuphoom, J.N. Coupland, J. Food Sci. 73(6), 274 (2008)

    Article  Google Scholar 

  4. N. Tangsuphoom, J.N. Coupland, Food Hydrocolloids 22(7), 1233 (2008)

    Article  CAS  Google Scholar 

  5. N. Tangsuphoom, J.N. Coupland, Food Hydrocolloids 23(7), 1792 (2009)

    Article  CAS  Google Scholar 

  6. N. Tangsuphoom, J.N. Coupland, Food Hydrocolloids 23(7), 1801 (2009)

    Article  CAS  Google Scholar 

  7. S. Ariyaprakai, L. Tanachote, P. Pradipasena, Food Hydrocolloids 30, 358 (2013)

    Article  CAS  Google Scholar 

  8. S. Ariyaprakai, K. Tananuwong, J. Food Eng. 152, 57 (2015)

    Article  CAS  Google Scholar 

  9. J. Yang, C. Qiu, G. Li, W.J. Lee, C.P. Tan, O.M. Lai, Y. Wang. Food Chem. 327, 127014 (2020)

  10. S. Ghosh, D. Rousseau, J. Colloid Interface Sci. 339(1), 91 (2009)

    Article  CAS  Google Scholar 

  11. Q.-Q. Yang, Z. Sui, W. Lu, H. Corke, Food Chem. 338, 128071 (2021)

  12. Z. Ma, N. Khalid, G. Shu, Y. Zhao, I. Kobayashi, M.A. Neves, A. Tuwo, M. Nakajima, ACS Omega 4(6), 10502 (2019)

    Article  CAS  Google Scholar 

  13. L. Cui, J. Fan, Y. Sun, Z. Zhu, J. Yi, Food Chem. 252, 28 (2018)

    Article  CAS  Google Scholar 

  14. D.J. McClements, E.A. Decker, S.J. Choi, J. Agric. Food Chem. 62(14), 3257 (2014)

    Article  CAS  Google Scholar 

  15. D. Wu, J. Lu, S. Zhong, P. Schwarz, B. Chen, J. Rao, LWT Food Sci. Technol. 106, 98 (2019)

    Article  CAS  Google Scholar 

  16. I. Dammak, P.J. do Amaral Sobral, J. Food Eng., 229, 12 (2018)

  17. A.M. Chuah, T. Kuroiwa, I. Kobayashi, M. Nakajima, Food Hydrocolloids 23(3), 600 (2009)

    Article  CAS  Google Scholar 

  18. M.I. Moran-Valero, V.M.P. Ruiz-Henestrosa, A.M.R. Pilosof, Colloids Surf., B, 151, 68 (2017)

  19. J. Palanuwech, R. Potineni, R.F. Roberts, J.N. Coupland, Food Hydrocolloids 17(1), 55 (2003)

    Article  CAS  Google Scholar 

  20. P. Thanasukarn, R. Pongsawatmanit, D.J. McClements, Food Hydrocolloids 18(6), 1033 (2004)

    Article  CAS  Google Scholar 

  21. K. Matsumiya, W. Takahashi, T. Inoue, Y. Matsumura, J. Food Eng. 96(2), 185 (2010)

    Article  CAS  Google Scholar 

  22. M. Schmiele, S. Busch, H. Morhenn, T. Schindler, T. Schmutzler, R. Schweins, P. Lindner, P. Boesecke, M. Westermann, F. Steiniger, S.S. Funari, T. Unruh, J. Phys. Chem. 120(24), 5513 (2016)

    Article  CAS  Google Scholar 

  23. M. Schmiele, T. Schindler, T. Unruh, S. Busch, H. Morhenn, M. Westermann, F. Steiniger, A. Radulescu, P. Lindner, R. Schweins, P. Boesecke, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 87 (6), 062316 (2013)

  24. M. Schmiele, T. Schindler, M. Westermann, F. Steiniger, A. Radulescu, A. Kriele, R. Gilles, T. Unruh, J. Phys. Chem. B 118(29), 8808 (2014)

    Article  CAS  Google Scholar 

  25. T. Tran Le, P. Sabatino, B. Heyman, M. Kasinos, H.H. Dinh, K. Dewettinck, J. Martins, P. Van der Meeren, Food Hydrocolloids. 25 (4), 594 (2011)

Download references

Acknowledgements

Enzyme-modified soy lecithin (ESL) used in this study were kindly donated by Rama Production., Ltd.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwimon Ariyaprakai.

Ethics declarations

Conflict of interest

The author declared that having no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11483_2021_9711_MOESM1_ESM.docx

Supplementary file1 Supplementary Figure 1 Oil droplet size distributions of initial and freeze thawed coconut oil-in-water emulsions contained 20 wt% oil with addition of 1-9 wt% enzyme-modified soy lecithin. (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariyaprakai, S. Freeze Thaw Stability and Heat Stability of Coconut Oil-in-Water Emulsions and Coconut Milk Emulsions Stabilized by Enzyme-Modified Soy Lecithin. Food Biophysics 17, 557–567 (2022). https://doi.org/10.1007/s11483-021-09711-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09711-w

Keywords

Navigation