Skip to main content
Log in

Outstanding Freeze-Thaw Stability of Mayonnaise Stabilized Solely by a Heated Soy Protein Isolate

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

There is an increasing interest in the development of cholesterol-free mayonnaise through the strategy to use food-grade polymeric emulsifiers to substitute or partially substitute egg yolk. In addition, mayonnaise-type emulsions or mayonnaise are usually susceptible to freezing. The work reported that a heated soy protein isolate (SPI) could perform as an effective sole stabilizer for mayonnaise-type high internal phase emulsions (HIPEs) with an outstanding freeze-thaw stability. Such HIPEs with a self-supporting morphology could be stabilized using the heated SPI at a protein concentration (c) as low as 0.3 wt.%. Increasing the c from 0.3 to 4.0 wt.% resulted in a progressive strengthening of gel network for the mayonnaise-type HIPEs, and the formation of finer droplets. All the as-formed HIPEs exhibited an elasticity-dominated rheological behavior, with the stiffness increasing the c. The elasticity of the gel-like HIPEs at low c values (e.g., 0.3 wt.%) was mainly associated with the formation of bridged emulsions, while that at high c values was more associated with the inter-droplet hydrophobic interactions between protein-coated droplets. All the mayonnaise-type HIPEs, formed even at a c value of 0.3 wt.%, were extremely stable against the freeze-thaw treatment. The high freeze-thaw stability seemed to be unrelated to the formation of ice crystals during the freezing. All the freeze-thawed HIPEs still exhibited a high long-term storage stability against coalescence, and their elasticity on the contrary became strengthened after the long-term storage. The findings have great implications for the development of cholesterol-free mayonnaise with a high freeze-thaw stability, suitable for food formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Ma, J.I. Boye, Food Bioprocess Technol. 6, 648–670 (2013)

    Article  CAS  Google Scholar 

  2. M.H. Alu’datt, T. Rababah, M.N. Alhamad, K. Ereifej, S. Gammoh, S. Kubow, D. Tawalbeh, J. Food Sci. Technol. 54, 1395–1405 (2007)

    Article  Google Scholar 

  3. E. Armaforte, L. Hopper, G. Stevenson, LWT 136, 110341 (2021)

    Article  CAS  Google Scholar 

  4. X. Liu, J. Guo, Z.L. Wan, Y.Y. Liu, R.J. Ruan, X.Q. Yang, Food Hydrocolloid. 77, 168–175 (2018)

    Article  Google Scholar 

  5. M. Rahbari, M. Aalami, M. Kashaninejad, Y. Maghsoudlou, S. Soheil, A. Aghdaei, J. Food Sci. Technol. 51, 3383–3393 (2015)

    Google Scholar 

  6. T. Ali, S. Waqar, S. Ali, S. Mehboob, A. Hasnain, Starch-Stärke 67, 183–190 (2015)

    Article  CAS  Google Scholar 

  7. P. Chivero, S. Gohtani, H. Yoshii, A. Nakamura, LWT 69, 59–66 (2016)

    Article  CAS  Google Scholar 

  8. B. Yu, C. Liu, B. Cui, H. Zhao, H. Tao, P. Liu, Starch -Stärke 73, 2000212 (2021)

    Article  CAS  Google Scholar 

  9. M. Ariizumi, M. Kubo, A. Handa, T. Hayakawa, K. Matsumiya, Y. Matsumura, Biosci. Biotechnol. Biochem. 81, 803–811 (2017)

    Article  CAS  Google Scholar 

  10. Y. Miyagawa, T. Ogawa, K. Nakagawa, S. Adachi, Biosci. Biotechnol. Biochem. 80, 786–790 (2016)

    Article  CAS  Google Scholar 

  11. D. Guzey, D.J. McClements, Adv. Colloid Interf. Sci. 128, 227–248 (2006)

    Article  Google Scholar 

  12. Z. Lu, S. Zhou, F. Ye, G. Zhou, R. Gao, D. Qin, G. Zhao, Food Chem. 353, 129418 (2021)

    Article  CAS  Google Scholar 

  13. C.H. Tang, Food Hydrocolloid. 103, 105664 (2020)

    Article  CAS  Google Scholar 

  14. Y.T. Xu, Y.X. Liu, C.H. Tang, Food Hydrocolloid. 80, 21–30 (2019)

    Article  Google Scholar 

  15. Y.T. Xu, C.H. Tang, B.P. Binks, Food Hydrocolloid. 98, 105254 (2020)

    Article  CAS  Google Scholar 

  16. Y.T. Xu, C.H. Tang, B.P. Binks, Food Hydrocolloid. 107, 105968 (2020)

    Article  CAS  Google Scholar 

  17. Y.T. Xu, C.H. Tang, T.X. Liu, R.H. Liu, J. Agric. Food Chem. 66(33), 8795–8804 (2018)

    Article  CAS  Google Scholar 

  18. Y.T. Xu, Y.H. Wang, F.P. Chen, C.H. Tang, Food Hydrocolloid. 103, 105694 (2020)

    Article  CAS  Google Scholar 

  19. Z. X. Huang, W. F. Lin, Y. Zhang, C. H. Tang, Food Hydrocolloid. submitted for publication (2021)

  20. F. Liu, C.H. Tang, J. Agric. Food Chem. 61, 8888–8898 (2013)

    Article  CAS  Google Scholar 

  21. F. Liu, C.H. Tang, Food Hydrocolloid. 60, 606–619 (2016)

    Article  CAS  Google Scholar 

  22. F. Liu, C.H. Tang, Food Hydrocolloid. 60, 620–630 (2016)

    Article  CAS  Google Scholar 

  23. P. Puligundla, Y. Cho, Y. Lee, Emirates J. Food Agric. 27(6), 463–468 (2015)

    Article  Google Scholar 

  24. M.R. Hollman, Z. Zhong, A.T. Nguyen, V. Schlegel, Y. Zhang, J. Food Sci. 82(7), 1588–1593 (2017)

    Article  Google Scholar 

  25. X.F. Zhu, N. Zhang, W.F. Lin, C.H. Tang, Food Hydrocolloid. 69, 173–184 (2017)

    Article  CAS  Google Scholar 

  26. X.F. Zhu, J. Zheng, D. Liu, C.Y. Qiu, W.F. Lin, C.H. Tang, Food Hydrocolloid. 74, 37–45 (2018)

    Article  CAS  Google Scholar 

  27. H. Tan, G. Sun, W.W. Lin, T. Ngai, ACS Appl. Mater. Interfaces 6(16), 13977–13984 (2014)

    Article  CAS  Google Scholar 

  28. Y.T. Xu, T. Yang, L.L. Liu, C.H. Tang, J. Colloid Interface Sci. 580, 515–527 (2020)

    Article  CAS  Google Scholar 

  29. J. Frelichowska, M.A. Bolzinger, Y. Chevalier, Y. J. Colloid Interface Sci. 351, 348–356 (2010)

    Article  CAS  Google Scholar 

  30. M. Lee, H.K. Chan, A. Mohraz, Langmuir 28, 3085–3091 (2012)

    Article  CAS  Google Scholar 

  31. Y. Miyagawa, T. Ogawa, K. Nakagawa, S. Adachi, Biosci. Biotechnol. Biochem. 80, 786–790 (2016)

    Article  CAS  Google Scholar 

  32. G.G. Palazolo, P.A. Sobral, J.R. Wagner, Food Hydrocolloid. 25, 398–409 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the NNSF of China (serial numbers: 31771917, 32172343 and 31471695), Guangzhou Natural Science Foundation under project (201904010143) and GDHVPS (2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Feng Lin, Yin Zhang or Chuan-He Tang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZX., Lin, WF., Zhang, Y. et al. Outstanding Freeze-Thaw Stability of Mayonnaise Stabilized Solely by a Heated Soy Protein Isolate. Food Biophysics 17, 335–343 (2022). https://doi.org/10.1007/s11483-022-09722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-022-09722-1

Keywords

Navigation