Skip to main content
Log in

Physical-Mechanical and Antifungal Properties of Pectin Nanocomposites / Neem Oil Nanoemulsion for Seed Coating

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2019

This article has been updated

Abstract

Biodegradable polymers, when reinforced with nanostructures, are considered good sustainable coatings and viable alternatives to replace conventional coatings. In addition, biopesticides are also considered safe, biodegradable and environmentally friendly; therefore there is a growing interest in nanoemulsions based on phytochemical mixtures. In this context, the aim of this study is to aggregate Neem oil nanoemulsions and pectin matrices to produce nanocomposite films, as well as evaluate the nanoemulsions effect on the film properties for coating soybean seeds. Nanoemulsions were characterized assessing their average diameter and stability, while the nanocomposite antifungal, morphology, mechanical and barrier properties were analyzed. In general, the nanoemulsions had an average diameter close to 59 ± 0.61 nm, showed good stability and its addition improved film mechanical properties: reduced stiffness, resistance, and water vapor permeability, and increased extensibility. In addition, Neem oil provided antifungal properties against Aspergillus Flavus and Penicillium Citrinum. The seed coatings promoted a positive effect on the germination process of soybean seeds. Thus, antifungal nanocomposite films from renewable sources were successfully produced. The fungicidal inhibition of Neem oil as a nanoemulsion makes these new materials promising for the production of seed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 13 November 2019

    The original version of this article unfortunately contained errors. The author name “Michele Valquíria dos Reis” and affiliation were incorrect.

References

  1. L. Piccinni, A. Scilingo, F. Speroni, Food Biophys. 14(1), 69–79 (2019)

    Google Scholar 

  2. Y. Zhang, M.J. Adams, Z. Zhang, O. Vidoni, B.H. Leuenberger, J. Achkar, Polymer (Guildf). 86, 208–219 (2016)

    CAS  Google Scholar 

  3. G.M. Conceição, A.D. Lucio, L.M. Mertz-Henning, F.A. Henning, M. Beche, F.F. Andrade, Rev. Bras. Eng. Agrícola Ambient. 20, 1 (2017)

    Google Scholar 

  4. S. Baker, T. Volova, S.V. Prudnikova, S. Satish, N.P.M.N. Prasad, Environ. Toxicol. Pharmacol. 53, 10–17 (2017)

    CAS  PubMed  Google Scholar 

  5. M. Nagalakshmaiah, S. Afrin, R.P. Malladi, S. Elkoun, M. Robert, M.A. Ansari, A. Svedberg, Z. Karim, Biocomposites: Present Trends and Challenges for the Future, 1st edn. (Woodhead Publishing, Elsevier, 2019), pp. 197–215

    Google Scholar 

  6. H. Shaghaleh, X. Xu, S. Wang, Polymers 8, 262 (2018)

    Google Scholar 

  7. S. Shankar, N. Tanomrod, S. Rawdkuen, J. Rhim, Int. J. Biol. Macromol. 92, 842 (2017)

    Google Scholar 

  8. F. Tornuk, F. Bozkurt, M.Z. Durak, Int. J. Biol. Macromol. 103, 669 (2017)

    PubMed  Google Scholar 

  9. M. Chaichi, M. Hashemi, F. Badii, A. Mohammadi, Carbohydr. Polym. 157, 167–175 (2017)

    CAS  PubMed  Google Scholar 

  10. I. Dammak, R.A. Carvalho, C.S.F. Trindade, R.V. Lourenço, P.J.A. Sobral, Int. J. Biol. Macromol. 98, 39–49 (2017)

    CAS  PubMed  Google Scholar 

  11. C.G. Otoni, M.R. Moura, F.A. Aouada, G.P. Camilloto, R.S. Cruz, M.V. Lorevice, N.D.F.F. Soares, L.H.C. Mattoso, Food Hydrocoll. 41, 188–194 (2014)

    CAS  Google Scholar 

  12. M.R. Moura, F.A. Aouada, J.R. Souza, L.H.C. Mattoso, 24, 486 (2014)

  13. M.A. Shah, S.H. Wani, J. Food Bioeng. Nanoprocessing 1, 285 (2016)

    Google Scholar 

  14. J. Jerobin, R.S. Sureshkumar, C.H. Anjali, A. Mukherjee, N. Chandrasekaran, Carbohydr. Polym 90, 1750 (2012)

    CAS  PubMed  Google Scholar 

  15. G. Sekar, A. Sivakumar, A. Mukherjee, N. Chandrasekaran, J. Mol. Liq. 212, 283–290 (2015)

    CAS  Google Scholar 

  16. A.J. Jadhav, C.R. Holkar, S.E. Karekar, D.V. Pinjari, A.B. Pandit, Ultrason. Sonochem. 23, 201–207 (2015)

    CAS  PubMed  Google Scholar 

  17. M.V. Lorevice, C.G. Otoni, M.R. Moura, L.H.C. Mattoso, Food Hydrocoll. 52, 732–740 (2016)

    CAS  Google Scholar 

  18. R. Núñez-Flores, B. Giménez, F. Fernández-Martín, M.E. López-Caballero, M.P. Montero, M.C. Gómez-Guillén, Food Hydrocoll. 30(1), 163–172 (2013)

    Google Scholar 

  19. S. Zivanovic, S. Chi, A.F. Draughon, J. Food Sci. 70, 45 (2005)

    Google Scholar 

  20. ASTM, Standard Test Methods for Water Vapor Transmission of Materials, E96/E96M-12 (American National Standards Institute, USA, 2012)

  21. T. Bourtoom, M.S. Chinnan, Food Sci. Technol. Int. 15, 149 (2008)

    Google Scholar 

  22. V.O. Tetens, Z. Geophys. 6, 297 (1930)

    Google Scholar 

  23. CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 13th edn. (Clinical and Laboratory Standards Institute, USA, 2018)

  24. Brazil, Rules for Seed Analysis, 1st edn. (Ministério da Agricultura Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, Brasília, 2009)

  25. R.S. Ghotbi, M. Khatibzadeh, S. Kordbacheh, Proc. 5th Int. Conf. Nanotechnol. Fundam. Appl. 13, 1 (2014)

    Google Scholar 

  26. E. Osman, M. Ali, N.A. Shakil, V.S. Rana, D.J. Sarkar, S. Majumder, P. Kaushik, B.B. Singh, J. Kumar, Ind. Crop. Prod. 108, 379–387 (2017)

    Google Scholar 

  27. A. Azeem, M. Rizwan, F.J. Ahmad, Z. Iqbal, R.K. Khar, M. Aqil, S. Talegaonkar, AAPS Pharma Sci. Technol. 10(1), 69–76 (2009)

    CAS  Google Scholar 

  28. V. Polychniatou, C. Tzia, Food Bioprocess Technol. 9(5), 882–891 (2016)

    CAS  Google Scholar 

  29. D.J. Mcclements, Soft Matter 8(6), 1719–1729 (2012)

    CAS  Google Scholar 

  30. B. Öztürk, Eur. J. Lipid Sci. Technol. 119(7), 1500539 (2017)

    Google Scholar 

  31. B. Ghanbarzadeh, A.R. Oromiehi, J. Food Eng. 90(4), 517–524 (2009)

    CAS  Google Scholar 

  32. Y. Qin, W. Li, D. Liu, M. Yuan, L. Li, Prog. Org. Coat. 103, 76–82 (2017)

    CAS  Google Scholar 

  33. K. Burapapadh, M. Kumpugdee-Vollrath, D. Chantasart, P. Sriamornsak, Carbohydr. Polym. 82(2), 384–393 (2010)

    CAS  Google Scholar 

  34. S. Kokoszka, F. Debeaufort, A. Hambleton, A. Lenart, A. Voilley, Innov. Food Sci. Emerg. Technol. 11(3), 503–510 (2010)

    CAS  Google Scholar 

  35. H.H. Gahruie, E. Ziaee, M.H. Eskandari, S.M.H. Hosseini, Carbohdrate Polym. 166, 93–103 (2017)

    Google Scholar 

  36. N. Sharma, B.S. Khatkar, R. Kaushik, P. Sharma, R. Sharma, Int. Food Res. J. 24, 94 (2017)

    CAS  Google Scholar 

  37. J.P. Maran, V. Sivakumar, R. Sridhar, V.P. Immanuel, Ind. Crop. Prod. 42, 159–168 (2013)

    Google Scholar 

  38. M.V. Dias, N. Fátima, F. Soares, S.V. Borges, M. Maria, D. Sousa, C. Antônio, I.R. Nolasco, D. Oliveira, E. Antonio, A. Medeiros, Food Chem 141(3), 3160–3166 (2013)

    CAS  PubMed  Google Scholar 

  39. A. Aljawish, L. Muniglia, A. Klouj, J. Jasniewski, J. el Scher, D. Stephane, Food Hydrocoll. 60, 551–558 (2016)

    CAS  Google Scholar 

  40. A. Nawab, F. Alam, M.A. Haq, Z. Lutfi, A. Hasnain, Int. J. Biol. Macromol. 98, 869–876 (2017)

    CAS  PubMed  Google Scholar 

  41. N.L. Oliveira, A.A. Rodrigues, I.C.O. Neves, A.M.T. Lago, S.V. Borges, J.V. Resende, Ind. Crop. Prod. 130, 499–510 (2019)

    CAS  Google Scholar 

  42. A. Perdones, M. Vargas, L. Atarés, A. Chiralt, Food Hydrocoll. 36, 256–264 (2014)

    CAS  Google Scholar 

  43. J. Antoniou, F. Liu, H. Majeed, F. Zhong, Food Hydrocoll. 44, 309–319 (2015)

    CAS  Google Scholar 

  44. S. Sahraee, J.M. Milani, B. Ghanbarzadeh, H. Hamishehkar, LWT Food Sci. Technol. 76, 33 (2016)

    Google Scholar 

  45. A. Cano, M. Cháfer, A. Chiralt, C. González-martínez, Foods 5, E3 (2016)

    Google Scholar 

  46. T.M. Santos, L. Ribeiro, C.A. Caceres, E.N. Ito, H.M.C. Azeredo, Int. J. Food Sci. Technol. 49(9), 2045–2051 (2014)

    CAS  Google Scholar 

  47. S. Sanuja, A. Agalya, M.J. Umapathy, Int. J. Biol. Macromol. 74, 76–84 (2015)

    CAS  PubMed  Google Scholar 

  48. Q. Huang, H. Yu, Q. Ru, J. Food Sci. 75, 50 (2010)

    Google Scholar 

  49. M.M. Joe, K. Bradeeba, R. Parthasarathi, P.K. Sivakumaar, P.S. Chauhan, S. Tipayno, A. Benson, T. Sa, J. Taiwan Inst. Chem. Eng. 43(2), 172–180 (2012)

    CAS  Google Scholar 

  50. V. Ghosh, A. Mukherjee, N. Chandrasekaran, Bionanoscience 4(2), 157–165 (2014)

    Google Scholar 

  51. A. Myc, T. Vanhecke, J.J. Landers, T. Hamouda, J.R. Baker, Mycopathologia 144, 195 (2002)

    Google Scholar 

  52. S. Sudha, M.K. Naik, K. Ajithkumar, J. Food Sci. Technol. 50(1), 159–164 (2013)

    CAS  PubMed  Google Scholar 

  53. L.F. Ferreira, G.F. Abreu, A.M.T. Lago, L.P. Figueiredo, F.M. Borém, M.A. Martins, S.V. Borges, M.V. Dias, LWT Food Sci. Technol. 96, 274–280 (2018)

    CAS  Google Scholar 

  54. H. Balouchi, S. Baladi, A. Moradi, M.M. Dehnavi, Int. Seed Test. Assoc. 45, 130 (2017)

    Google Scholar 

  55. T.A.S. Smaniotto, O. Resende, K.A.F. Marçal, D.E.C. Oliveira, G.A. Simon, Rev. Bras. Eng. Agrícola Ambient. 18(4), 446–453 (2014)

    Google Scholar 

  56. J. Liu, W. Qin, H. Wu, C. Yang, J. Deng, N. Iqbal, W. Liu, J. Du, K. Shu, F. Yang, X. Wang, T. Yong, W. Yang, Food Chem. 223, 104–113 (2017)

    CAS  PubMed  Google Scholar 

  57. K. Rathinavel, Indian J. Agricutural Reserarch 49, 447 (2015)

    Google Scholar 

  58. M.P. Ludwig, O.A.L. Filho, L. Baudet, L.M.C. Dutra, S.A. Gonçalves, R.L. Crizel, Rev. Bras. Sementes 33(1), 395–406 (2011)

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001. The authors wish to thank the financial support the CNPq and FAPEMIG, technical support and supply of equipment the Embrapa Instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lívio Antônio Silva Pereira.

Ethics declarations

Conflict of Interests

The authors declare there is no conflict of interest for this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro e Silva, P., Pereira, L.A.S., Lago, A.M.T. et al. Physical-Mechanical and Antifungal Properties of Pectin Nanocomposites / Neem Oil Nanoemulsion for Seed Coating. Food Biophysics 14, 456–466 (2019). https://doi.org/10.1007/s11483-019-09592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09592-0

Keywords

Navigation