Skip to main content
Log in

In a Model of Neuroinflammation Designed to Mimic Delirium, Quetiapine Reduces Cortisol Secretion and Preserves Reversal Learning in the Attentional Set Shifting Task

  • Brief Report
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Quetiapine, an atypical antipsychotic medication has lacked pre-clinical validation for its purported benefits in the treatment of delirium. This laboratory investigation examined the effects of quetiapine on the attentional set shifting task (ASST), a measure of cognitive flexibility and executive functioning, in a rodent model of lipopolysaccharide (LPS) mediated neuroinflammation. 19 Sprague Dawley female rats were randomly selected to receive intraperitoneal placebo (N = 5), LPS and placebo (N = 7) or LPS and quetiapine (n = 7) and performed the ASST. We measured trials to criterion, errors, non-locomotion episodes and latency to criterion, serum cortisol and tumor necrosis factor alpha (TNF-α) levels. TNF-α levels were not different between groups at 24 h. Cortisol levels in the LPS + Quetiapine group were reduced compared to LPS + Placebo (P < 0.001) and did not differ from the placebo group (P = 0.15). Analysis between LPS + Quetiapine and LPS + Placebo treated rats demonstrated improvement in the compound discrimination reversal (CD Rev1) (P = 0.016) and the intra-dimensional reversal (ID Rev2) (P = 0.007) discriminations on trials to criterion. LPS + Quetiapine treated rats had fewer errors than LPS + Placebo treated animals in the compound discrimination (CD) (P = 0.007), CD Rev1 (P = 0.005), ID Rev2 (P < 0.001) discriminations. There was no difference in non-locomotion frequency or latency to criterion between the three groups in all discriminations (P > 0.0167). We demonstrated preserved reversal learning, no effect on attentional set shifting and normalized cortisol levels in quetiapine-treated rats in this neuroinflammatory model of delirium. This suggests that quetiapine’s beneficial effects in delirium may be related to the preservation of reversal learning and potential downstream effects related to reduction in cortisol production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data that was generated or analyzed for this series of experiments are included in the published article.

References

  • Alexander KS, Pocivavsek A, Wu HQ, Pershing ML, Schwarcz R, Bruno JP (2013) Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience 238:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beishuizen A, Thijs LG (2003) Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res 9:3–24

    CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    Article  CAS  PubMed  Google Scholar 

  • Brown VJ, Tait DS (2016) Attentional set-shifting across species. Curr Top Behav Neurosci 28:363–395

    Article  CAS  PubMed  Google Scholar 

  • Carroll BJ, Curtis GC, Mendels J (1976) Cerebrospinal fluid and plasma free cortisol concentrations in depression. Psychol Med 6:235–244

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Lee H, Chung TS, Park KM, Jung YC, Kim SI, Kim JJ (2012) Neural network functional connectivity during and after an episode of delirium. Am J Psychiatry 169:498–507

    Article  PubMed  Google Scholar 

  • Cohrs S, Roher C, Jordan W, Meier A, Huether G, Wuttke W, Ruther E, Rodenbeck A (2006) The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology 185:11–18

    Article  CAS  PubMed  Google Scholar 

  • Cross AJ, Widzowski D, Maciag C, Zacco A, Hudzik T, Liu J, Nyberg S, Wood MW (2016) Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models. Br J Pharmacol 173:155–166

    Article  CAS  PubMed  Google Scholar 

  • Culley DJ, Snayd M, Baxter MG, Xie Z, Lee IH, Rudolph J, Inouye SK, Marcantonio ER, Crosby G (2014) Systemic inflammation impairs attention and cognitive flexibility but not associative learning in aged rats: possible implications for delirium. Front Aging Neurosci 6:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  CAS  PubMed  Google Scholar 

  • Devlin JW, Roberts RJ, Fong JJ, Skrobik Y, Riker RR, Hill NS, Robbins T, Garpestad E (2010) Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care Med 38:419–427

    Article  CAS  PubMed  Google Scholar 

  • Devlin JW, Skrobik Y, Riker RR, Hinderleider E, Roberts RJ, Fong JJ, Ruthazer R, Hill NS, Garpestad E (2011) Impact of quetiapine on resolution of individual delirium symptoms in critically ill patients with delirium: a post-hoc analysis of a double-blind, randomized, placebo-controlled study. Crit Care 15:R215

    Article  PubMed  PubMed Central  Google Scholar 

  • Devlin JW, Michaud CJ, Bullard HM, Harris SA, Thomas WL (2016) Quetiapine for intensive care unit delirium: the evidence remains weak. Pharmacotherapy 36:e12-e13; discussion e13-14

  • Diggle P, Heagerty P, Liang K, Zeger SL (2002) Analysis of longitudinal data. Oxford University Press, Oxford

    Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847

    Article  CAS  PubMed  Google Scholar 

  • Duggan MC, Wang L, Wilson JE, Dittus RS, Ely EW, Jackson JC (2017) The relationship between executive dysfunction, depression, and mental health-related quality of life in survivors of critical illness: results from the BRAIN-ICU investigation. J Crit Care 37:72–79

    Article  PubMed  Google Scholar 

  • Girard TD, Pandharipande PP, Ely EW (2008) Delirium in the intensive care unit. Crit care 12(Suppl 3):S3

    Article  PubMed  PubMed Central  Google Scholar 

  • Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, Gordon SM, Canonico AE, Dittus RS, Bernard GR, Ely EW (2010) Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 38:1513–1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Girshkin L, Matheson SL, Shepherd AM, Green MJ (2014) Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology 49:187–206

    Article  CAS  PubMed  Google Scholar 

  • Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG (2016) Postoperative cognitive dysfunction and neuroinflammation; cardiac surgery and abdominal surgery are not the same. Brain Behav Immun 54:178–193

    Article  CAS  PubMed  Google Scholar 

  • Inouye SK, Marcantonio ER, Kosar CM, Tommet D, Schmitt EM, Travison TG, Saczynski JS, Ngo LH, Alsop DC, Jones RN (2016) The short-term and long-term relationship between delirium and cognitive trajectory in older surgical patients. Alzheimers Dement: The Journal of the Alzheimer's Association 12:766–775

    Article  Google Scholar 

  • Kanova M, Sklienka P, Roman K, Burda M, Janoutova J (2017) Incidence and risk factors for delirium development in ICU patients - a prospective observational study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 161:187–196

    Article  PubMed  Google Scholar 

  • Kawano T, Yamanaka D, Aoyama B, Tateiwa H, Shigematsu-Locatelli M, Nishigaki A, Iwata H, Locatelli FM, Yokoyama M (2018) Involvement of acute neuroinflammation in postoperative delirium-like cognitive deficits in rats. J Anesth 32:506–517

    Article  PubMed  Google Scholar 

  • Kazmierski J, Banys A, Latek J, Bourke J, Jaszewski R (2013) Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: a prospective cohort study. Crit Care 17:R38

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazmierski J, Banys A, Latek J, Bourke J, Jaszewski R, Sobow T, Kloszewska I (2014) Mild cognitive impairment with associated inflammatory and cortisol alterations as independent risk factor for postoperative delirium. Dement Geriatr Cogn Disord 38:65–78

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R (2015) Plasticity in the prefrontal cortex of adult rats. Front Cell Neurosci 9:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maclullich AM, Ferguson KJ, Miller T, de Rooij SE, Cunningham C (2008) Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res 65:229–238

    Article  PubMed  PubMed Central  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • McLean SL, Beck JP, Woolley ML, Neill JC (2008) A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav Brain Res 189:152–158

    Article  CAS  PubMed  Google Scholar 

  • Morandi A, Rogers BP, Gunther ML, Merkle K, Pandharipande P, Girard TD, Jackson JC, Thompson J, Shintani AK, Geevarghese S, Miller RR 3rd, Canonico A, Cannistraci CJ, Gore JC, Ely EW, Hopkins RO (2012) The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study*. Crit Care Med 40:2182–2189

    Article  PubMed  PubMed Central  Google Scholar 

  • Munster BC, Aronica E, Zwinderman AH, Eikelenboom P, Cunningham C, Rooij SE (2011) Neuroinflammation in delirium: a postmortem case-control study. Rejuvenation Res 14:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers B, McKlveen JM, Morano R, Ulrich-Lai YM, Solomon MB, Wilson SP, Herman JP (2017) Vesicular glutamate transporter 1 knockdown in Infralimbic prefrontal cortex augments neuroendocrine responses to chronic stress in male rats. Endocrinology 158:3579–3591

    Article  PubMed  PubMed Central  Google Scholar 

  • National Research Council (US) (2011) Committee for the update of the guide for the care and Use of laboratory animals. National Academies Press (US), Washington, DC

  • Nestor PG, Nakamura M, Niznikiewicz M, Levitt JJ, Newell DT, Shenton ME, McCarley RW (2015) Attentional control and intelligence: MRI orbital frontal gray matter and neuropsychological correlates. Behav Neurol 2015:354186

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikiforuk A (2013) Quetiapine ameliorates stress-induced cognitive inflexibility in rats. Neuropharmacology 64:357–364

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Popik P (2012) Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology 220:65–74

    Article  CAS  PubMed  Google Scholar 

  • Nothdurfter C, Schmotz C, Sarubin N, Baghai TC, Laenger A, Lieb M, Bondy B, Rupprecht R, Schule C (2014) Effects of escitalopram/quetiapine combination therapy versus escitalopram monotherapy on hypothalamic-pituitary-adrenal-axis activity in relation to antidepressant effectiveness. J Psychiatr Res 52:15–20

    Article  PubMed  Google Scholar 

  • Ohtani T, Nestor PG, Bouix S, Newell D, Melonakos ED, McCarley RW, Shenton ME, Kubicki M (2017) Exploring the neural substrates of attentional control and human intelligence: diffusion tensor imaging of prefrontal white matter tractography in healthy cognition. Neuroscience 341:52–60

    Article  CAS  PubMed  Google Scholar 

  • Ondicova K, Kvetnansky R, Mravec B (2012) Medial prefrontal cortex transection enhanced stress-induced activation of sympathoadrenal system in rats. Endocr Regul 46:129–136

    Article  CAS  PubMed  Google Scholar 

  • Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW (2013) Long-term cognitive impairment after critical illness. N Engl J Med 369:1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pira L, Mongeau R, Pani L (2004) The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex. Eur J Pharmacol 504:61–64

    Article  CAS  PubMed  Google Scholar 

  • Popik P, Nikiforuk A (2015) Attentional set-shifting paradigm in the rat. Curr Protoc Neurosci 72:9.51.51–9.51.13

    Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Radley JJ, Arias CM, Sawchenko PE (2006) Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 26:12967–12976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts HFC, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25(2):532–538

    Article  CAS  PubMed  Google Scholar 

  • Shioiri A, Kurumaji A, Takeuchi T, Matsuda H, Arai H, Nishikawa T (2010) White matter abnormalities as a risk factor for postoperative delirium revealed by diffusion tensor imaging. Am J Geriatr Psychiatry 18:743–753

    Article  PubMed  Google Scholar 

  • Shioiri A, Kurumaji A, Takeuchi T, Nemoto K, Arai H, Nishikawa T (2016) A decrease in the volume of gray matter as a risk factor for postoperative delirium revealed by an atlas-based method. Am J Geriatr Psychiatry 24:528–536

    Article  PubMed  Google Scholar 

  • Stollings JL, Wilson JE, Jackson JC, Ely EW (2016) Executive dysfunction following critical illness: exploring risk factors and management options in geriatric populations. Curr Behav Neurosci Rep 3:176–184

    Article  Google Scholar 

  • Sun L, Jia P, Zhang J, Zhang X, Zhang Y, Jiang H, Jiang W, Guo Y (2016) Production of inflammatory cytokines, cortisol, and Abeta1-40 in elderly oral cancer patients with postoperative delirium. Neuropsychiatr Dis Treat 12:2789–2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Cortese GP, Barrientos RM, Maier SF, Patterson SL (2018) Aging and an immune challenge interact to produce prolonged, but not permanent, reductions in Hippocampal L-LTP and mBDNF in a rodent model with features of delirium. eNeuro 5(3). https://doi.org/10.1523/ENEURO.0009-18.2018

  • Tarazi FI, Zhang K, Baldessarini RJ (2001) Long-term effects of olanzapine, risperidone, and quetiapine on dopamine receptor types in regions of rat brain: implications for antipsychotic drug treatment. J Pharmacol Exp Ther 297:711–717

    CAS  PubMed  Google Scholar 

  • Vakharia K, Hinson JP (2005) Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology 146:1398–1402

    Article  CAS  PubMed  Google Scholar 

  • Westhoff D, Witlox J, Koenderman L, Kalisvaart KJ, de Jonghe JF, van Stijn MF, Houdijk AP, Hoogland IC, Maclullich AM, van Westerloo DJ, van de Beek D, Eikelenboom P, van Gool WA (2013) Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients. J Neuroinflammation 10:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by internal funding from the Penn State Health Milton S. Hershey Medical Center Department of Anesthesiology & Perioperative Medicine (Study #47992).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed experiments: ZJC, LM, VRV.

Analysis and interpretation of the data: ZJC, ARK, VRV, KK.

Wrote the manuscript: ZJC, ARK, VRV, KK.

Data acquisition: ZJC, LM.

Corresponding author

Correspondence to Zyad J. Carr.

Ethics declarations

Ethics Approval

The experimental design was approved by the Penn State College of Medicine IACUC. All procedures adhered to the guidelines in the Principles of Laboratory Animal Care (National Institutes of Health, Eighth Ed., National Academies Press, 2011).

Consent for Publication

Not applicable.

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carr, Z.J., Miller, L., Ruiz-Velasco, V. et al. In a Model of Neuroinflammation Designed to Mimic Delirium, Quetiapine Reduces Cortisol Secretion and Preserves Reversal Learning in the Attentional Set Shifting Task. J Neuroimmune Pharmacol 14, 383–390 (2019). https://doi.org/10.1007/s11481-019-09857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-019-09857-y

Keywords

Navigation