Skip to main content

Advertisement

Log in

FDC:TFH Interactions within Cervical Lymph Nodes of SIV-Infected Rhesus Macaques

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Cerebrospinal fluid (CSF) drains via the lymphatic drainage pathway. This lymphatic pathway connects the central nervous system (CNS) to the cervical lymph node (CLN). As the CSF drains to CLN via the dural and nasal lymphatics, T cells and antigen presenting cells pass along the channels from the subarachnoid space through the cribriform plate. Human immunodeficiency virus (HIV) may also egress from the CNS along this pathway. As a result, HIV egressing from the CNS may accumulate within the CLN. Towards this objective, we analyzed CLNs isolated from rhesus macaques that were chronically-infected with simian immunodeficiency virus (SIV). We detected significant accumulation of SIV within the CLNs. SIV virion trapping was observed on follicular dendritic cells (FDCs) localized within the follicular regions of CLNs. In addition, SIV antigens formed immune complexes when FDCs interacted with B cells within the germinal centers. Subsequent interaction of these B cells with CD4+ T follicular helper cells (TFHs) resulted in infection of the latter. Of note, 73% to 90% of the TFHs cells within CLNs were positive for SIV p27 antigen. As such, it appears that not only do the FDCs retain SIV they also transmit them (via B cells) to TFHs within these CLNs. This interaction results in infection of TFHs in the CLNs. Based on these observations, we infer that FDCs within the CLNs have a novel role in SIV entrapment with implications for viral trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguzzi A, Krautler NJ (2010) Characterizing follicular dendritic cells: a progress report. Eur J Immunol 40:2134–2138

    Article  CAS  PubMed  Google Scholar 

  • Andres KH, von During M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301

    Article  CAS  PubMed  Google Scholar 

  • Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314

    Article  CAS  PubMed  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Greenberg RN, Berger JR (2004) Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol 157:140–146

    Article  CAS  PubMed  Google Scholar 

  • Banki Z, Kacani L, Rusert P, Pruenster M, Wilflingseder D, Falkensammer B, Stellbrink HJ, van Lunzen J, Trkola A, Dierich MP, Stoiber H (2005) Complement dependent trapping of infectious HIV in human lymphoid tissues. AIDS 19:481–486

    Article  CAS  PubMed  Google Scholar 

  • Byrareddy SN, Kallam B, Arthos J, Cicala C, Nawaz F, Hiatt J, Kersh EN, McNicholl JM, Hanson D, Reimann KA, Brameier M, Walter L, Rogers K, Mayne AE, Dunbar P, Villinger T, Little D, Parslow TG, Santangelo PJ, Villinger F, Fauci AS, Ansari AA (2014) Targeting alpha4beta7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nat Med 20:1397–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caux C, Liu YJ, Banchereau J (1995) Recent advances in the study of dendritic cells and follicular dendritic cells. Immunol Today 16:2–4

    Article  CAS  PubMed  Google Scholar 

  • Churchill M, Nath A (2013) Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS 8:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe S, Zhu T, Muller WA (2003) The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 74:635–641

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276

    Article  CAS  PubMed  Google Scholar 

  • Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M, Jr., Bess J, Anderson JL, Perkey KE, Reilly C, McCune JM, Haase AT, Lifson JD, Schacker TW, Estes JD. 2016. Defining HIV and SIV reservoirs in lymphoid tissues. Pathog Immun 1: 68–106

  • Edén A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslén M. 2007. Immune activation of the central nervous system is still present after> 4 years of effective highly active antiretroviral therapy. J Infect Dis 196: 1779–1783

  • Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132:317–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes JD, Thacker TC, Hampton DL, Kell SA, Keele BF, Palenske EA, Druey KM, Burton GF (2004) Follicular dendritic cell regulation of CXCR4-mediated germinal center CD4 T cell migration. J Immunol 173:6169–6178

    Article  CAS  PubMed  Google Scholar 

  • Fahey LM, Wilson EB, Elsaesser H, Fistonich CD, McGavern DB, Brooks DG (2011) Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J Exp Med 208:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG (2009) Follicular helper T cells: lineage and location. Immunity 30:324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fois AF, Brew BJ (2015) The potential of the CNS as a reservoir for HIV-1 infection: implications for HIV eradication. Curr HIV/AIDS Rep 12:299–303

    Article  PubMed  Google Scholar 

  • Gerdes J, Flad H-D (1992) Follicular dendritic cells and their role in HIV infection. Immunol Today 13:81–83

    Article  CAS  PubMed  Google Scholar 

  • Grouard G, Durand I, Filgueira L, Banchereau J, Liu YJ (1996) Dendritic cells capable of stimulating T cells in germinal centres. Nature 384:364–367

    Article  CAS  PubMed  Google Scholar 

  • Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS One 3:e3321

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG (2007) Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol 179:5099–5108

    Article  CAS  PubMed  Google Scholar 

  • Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, Carroll MC (2013) Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heesters BA, Myers RC, Carroll MC (2014) Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14:495–504

    Article  CAS  PubMed  Google Scholar 

  • Heesters BA, Lindqvist M, Vagefi PA, Scully EP, Schildberg FA, Altfeld M, Walker BD, Kaufmann DE, Carroll MC (2015) Follicular dendritic cells retain infectious HIV in cycling endosomes. PLoS Pathog 11:e1005285

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann A, Pfeil J, Alfonso J, Kurz FT, Sahm F, Heiland S, Monyer H, Bendszus M, Mueller AK, Helluy X, Pham M (2016) Experimental cerebral malaria spreads along the rostral migratory stream. PLoS Pathog 12:e1005470

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollenbach R, Sagar D, Khan ZK, Callen S, Yao H, Shirazi J, Buch S, Jain P (2014) Effect of morphine and SIV on dendritic cell trafficking into the central nervous system of rhesus macaques. J Neurovirol 20:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hong JJ, Amancha PK, Rogers K, Ansari AA, Villinger F (2012) Spatial alterations between CD4+ T follicular helper, B, and CD8+ T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J Immunol 188:3247–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra11–147ra11

    Article  Google Scholar 

  • Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B (2010) Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J Immunol 184:7196–7206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobe O, Ariyoshi K, Marchant A, Sabally S, Corrah T, Berry N, Jaffar S, Whittle H (1999) Proviral load and immune function in blood and lymph node during HIV-1 and HIV-2 infection. Clin Exp Immunol 116:474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keele BF, Tazi L, Gartner S, Liu Y, Burgon TB, Estes JD, Thacker TC, Crandall KA, McArthur JC, Burton GF (2008) Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J Virol 82:5548–5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepler TB, Perelson AS (1993) Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol Today 14:412–415

    Article  CAS  PubMed  Google Scholar 

  • Lamers SL, Gray RR, Salemi M, Huysentruyt LC, McGrath MS (2011) HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. Infect Genet Evol 11:31–37

    Article  PubMed  Google Scholar 

  • Lamers SL, Rose R, Ndhlovu LC, Nolan DJ, Salemi M, Maidji E, Stoddart CA, McGrath MS (2016) The meningeal lymphatic system: a route for HIV brain migration? J Neuro-Oncol 22:275–281

    CAS  Google Scholar 

  • Lindqvist M, van Lunzen J, Soghoian DZ, Kuhl BD, Ranasinghe S, Kranias G, Flanders MD, Cutler S, Yudanin N, Muller MI, Davis I, Farber D, Hartjen P, Haag F, Alter G, Schulze zur Wiesch J, Streeck H (2012) Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest 122:3271–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling C, Sandor M, Suresh M, Fabry Z (2006) Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 26:731–741

    Article  CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015a) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louveau A, Harris TH, Kipnis J (2015b) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36:569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin DH, Saunders EF, Bronfin B, de Rosa N, Axthelm MK, Alvarez X, Letvin NL (2002) High frequency of virus-specific B lymphocytes in germinal centers of simian-human immunodeficiency virus-infected rhesus monkeys. J Virol 76:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matyszak MK, Perry VH (1996) The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74:599–608

    Article  CAS  PubMed  Google Scholar 

  • Mohammad MG, Tsai VW, Ruitenberg MJ, Hassanpour M, Li H, Hart PH, Breit SN, Sawchenko PE, Brown DA (2014) Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest 124:1228–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashenkov M, Huang YM, Kostulas V, Haglund M, Soderstrom M, Link H (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124:480–492

    Article  CAS  PubMed  Google Scholar 

  • Perreau M, Savoye A-L, De Crignis E, Corpataux J-M, Cubas R, Haddad EK, De Leval L, Graziosi C, Pantaleo G (2013) Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med 210:143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovas C, Yamamoto T, Gerner MY, Boswell KL, Wloka K, Smith EC, Ambrozak DR, Sandler NG, Timmer KJ, Sun X, Pan L, Poholek A, Rao SS, Brenchley JM, Alam SM, Tomaras GD, Roederer M, Douek DC, Seder RA, Germain RN, Haddad EK, Koup RA (2012) CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest 122:3281–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K (2002) The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 196:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenberger MK, Keele BF, Wietgrefe SW, Fletcher CV, Beilman GJ, Chipman JG, Khoruts A, Estes JD, Anderson J, Callisto SP, Schmidt TE, Thorkelson A, Reilly C, Perkey K, Reimann TG, Utay NS, Nganou Makamdop K, Stevenson M, Douek DC, Haase AT, Schacker TW (2015) Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc Natl Acad Sci U S A 112:E1126–E1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P (2012a) Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation 9:1

    Article  Google Scholar 

  • Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P (2012b) Mechanisms of dendritic cell trafficking across the blood-brain barrier. J NeuroImmune Pharmacol 7:74–94

    Article  PubMed  Google Scholar 

  • Saksela K, Muchmore E, Girard M, Fultz P, Baltimore D (1993) High viral load in lymph nodes and latent human immunodeficiency virus (HIV) in peripheral blood cells of HIV-1-infected chimpanzees. J Virol 67:7423–7427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 157:1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, Keele BF, Kerkering TM, Ferreira-Gonzalez A, Szakal AK, Tew JG, Burton GF (2001) Persistence of infectious HIV on follicular dendritic cells. J Immunol 166:690–696

    Article  CAS  PubMed  Google Scholar 

  • Smith-Franklin BA, Keele BF, Tew JG, Gartner S, Szakal AK, Estes JD, Thacker TC, Burton GF (2002) Follicular dendritic cells and the persistence of HIV infectivity: the role of antibodies and Fcgamma receptors. J Immunol 168:2408–2414

    Article  CAS  PubMed  Google Scholar 

  • Spudich S, Gisslen M, Hagberg L, Lee E, Liegler T, Brew B, Fuchs D, Tambussi G, Cinque P, Hecht FM, Price RW (2011) Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis 204:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suan D, Nguyen A, Moran I, Bourne K, Hermes JR, Arshi M, Hampton HR, Tomura M, Miwa Y, Kelleher AD, Kaplan W, Deenick EK, Tangye SG, Brink R, Chtanova T, Phan TG (2015) T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42:704–718

    Article  CAS  PubMed  Google Scholar 

  • Tacchetti C, Favre A, Moresco L, Meszaros P, Luzzi P, Truini M, Rizzo F, Grossi CE, Ciccone E (1997) HIV is trapped and masked in the cytoplasm of lymph node follicular dendritic cells. Am J Pathol 150:533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker TC, Zhou X, Estes JD, Jiang Y, Keele BF, Elton TS, Burton GF (2009) Follicular dendritic cells and human immunodeficiency virus type 1 transcription in CD4+ T cells. J Virol 83:150–158

    Article  CAS  PubMed  Google Scholar 

  • van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, t Hart BA, Amor S, Laman JD, Boven LA (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87:273–286

    Article  PubMed  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Shapiro L, Fellingham G, Willardson BM, Burton GF (2011) HIV replication in CD4+ T lymphocytes in the presence and absence of follicular dendritic cells: inhibition of replication mediated by α-1-antitrypsin through altered IκBα ubiquitination. J Immunol 186:3148–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zink MC, Brice AK, Kelly KM, Queen SE, Gama L, Li M, Adams RJ, Bartizal C, Varrone J, Rabi SA (2010) Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis 202:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zozulya AL, Ortler S, Lee J, Weidenfeller C, Sandor M, Wiendl H, Fabry Z (2009) Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J Neurosci 29:140–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

These studies have been funded in part with NINDS R01 NS097147 to PJ and NIAID R01 AI113883; R21 AI114415; and R21 MH11345501 to SB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siddappa N. Byrareddy or Pooja Jain.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. For the detailed ethical statement please refer to materials and methods.

Conflict of Interest

The authors declare no competing financial interests

Electronic supplementary material

Supplementary Fig. 1

(A) Representative figure from center of BCF showing antigen-harboring FDCs. The center was relatively devoid of CD20+B cells (green) and had plenty of CD35+FDCs (yellow), which showed the colocalization with p27 (red) inside the BCF. There were relatively fewer PD-1hi expressing TFH cells (blue) also. (B) The numbers of TFH cells were more towards the peripheral regions of BCF. This is significant considering the ability of TFH cells to migrate from lymph nodes into circulation. (PDF 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, R.S., Sharma, R.K., Muir, R.R. et al. FDC:TFH Interactions within Cervical Lymph Nodes of SIV-Infected Rhesus Macaques. J Neuroimmune Pharmacol 13, 204–218 (2018). https://doi.org/10.1007/s11481-017-9775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9775-0

Keywords

Navigation